| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672 | /** * The array module provides array manipulation routines in a manner that * balances performance and flexibility. Operations are provided for sorting, * and for processing both sorted and unsorted arrays. * * Copyright: Copyright (C) 2005-2006 Sean Kelly. All rights reserved. * License: BSD style: $(LICENSE) * Authors: Sean Kelly */ module tango.core.Array; private import tango.core.Traits; private import tango.stdc.stdlib : alloca, rand; version( TangoDoc ) { alias int Num; alias int Elem; alias int Elem2; alias bool function( Elem ) Pred1E; alias bool function( Elem, Elem ) Pred2E; alias Elem2 function( Elem, Elem ) Map2E; alias Elem function( Elem, Elem ) Reduce2E; alias size_t function( size_t ) Oper1A; } private { struct IsEqual( T ) { static bool opCall( T p1, T p2 ) { // TODO: Fix this if/when opEquals is changed to return a bool. static if( is( T == class ) || is( T == struct ) ) return (p1 == p2) != 0; else return p1 == p2; } } struct IsLess( T ) { static bool opCall( T p1, T p2 ) { return p1 < p2; } } struct RandOper() { static size_t opCall( size_t lim ) { // NOTE: The use of 'max' here is intended to eliminate modulo bias // in this routine. size_t max = size_t.max - (size_t.max % lim); size_t val; do { static if( size_t.sizeof == 4 ) { val = (((cast(size_t)rand()) << 16) & 0xffff0000u) | (((cast(size_t)rand())) & 0x0000ffffu); } else // assume size_t.sizeof == 8 { val = (((cast(size_t)rand()) << 48) & 0xffff000000000000uL) | (((cast(size_t)rand()) << 32) & 0x0000ffff00000000uL) | (((cast(size_t)rand()) << 16) & 0x00000000ffff0000uL) | (((cast(size_t)rand())) & 0x000000000000ffffuL); } } while( val > max ); return val % lim; } } template ElemTypeOf( T ) { alias typeof(T[0]) ElemTypeOf; } } //////////////////////////////////////////////////////////////////////////////// // Find //////////////////////////////////////////////////////////////////////////////// version( TangoDoc ) { /** * Performs a linear scan of buf from [0 .. buf.length$(RP), returning * the index of the first element matching pat, or buf.length if no match * was found. Comparisons will be performed using the supplied predicate * or '==' if none is supplied. * * Params: * buf = The array to search. * pat = The pattern to search for. * pred = The evaluation predicate, which should return true if e1 is * equal to e2 and false if not. This predicate may be any * callable type. * * Returns: * The index of the first match or buf.length if no match was found. */ size_t find( Elem[] buf, Elem pat, Pred2E pred = Pred2E.init ); /** * Performs a linear scan of buf from [0 .. buf.length$(RP), returning * the index of the first element matching pat, or buf.length if no match * was found. Comparisons will be performed using the supplied predicate * or '==' if none is supplied. * * Params: * buf = The array to search. * pat = The pattern to search for. * pred = The evaluation predicate, which should return true if e1 is * equal to e2 and false if not. This predicate may be any * callable type. * * Returns: * The index of the first match or buf.length if no match was found. */ size_t find( Elem[] buf, Elem[] pat, Pred2E pred = Pred2E.init ); } else { template find_( Elem, Pred = IsEqual!(Elem) ) { static assert( isCallableType!(Pred) ); size_t fn( Elem[] buf, Elem pat, Pred pred = Pred.init ) { foreach( size_t pos, Elem cur; buf ) { if( pred( cur, pat ) ) return pos; } return buf.length; } size_t fn( Elem[] buf, Elem[] pat, Pred pred = Pred.init ) { if( buf.length == 0 || pat.length == 0 || buf.length < pat.length ) { return buf.length; } size_t end = buf.length - pat.length + 1; for( size_t pos = 0; pos < end; ++pos ) { if( pred( buf[pos], pat[0] ) ) { size_t mat = 0; do { if( ++mat >= pat.length ) return pos - pat.length + 1; if( ++pos >= buf.length ) return buf.length; } while( pred( buf[pos], pat[mat] ) ); pos -= mat; } } return buf.length; } } template find( Buf, Pat ) { size_t find( Buf buf, Pat pat ) { return find_!(ElemTypeOf!(Buf)).fn( buf, pat ); } } template find( Buf, Pat, Pred ) { size_t find( Buf buf, Pat pat, Pred pred ) { return find_!(ElemTypeOf!(Buf), Pred).fn( buf, pat, pred ); } } debug( UnitTest ) { unittest { // find element assert( find( "", 'a' ) == 0 ); assert( find( "abc", 'a' ) == 0 ); assert( find( "abc", 'b' ) == 1 ); assert( find( "abc", 'c' ) == 2 ); assert( find( "abc", 'd' ) == 3 ); // null parameters assert( find( "", "" ) == 0 ); assert( find( "a", "" ) == 1 ); assert( find( "", "a" ) == 0 ); // exact match assert( find( "abc", "abc" ) == 0 ); // simple substring match assert( find( "abc", "a" ) == 0 ); assert( find( "abca", "a" ) == 0 ); assert( find( "abc", "b" ) == 1 ); assert( find( "abc", "c" ) == 2 ); assert( find( "abc", "d" ) == 3 ); // multi-char substring match assert( find( "abc", "ab" ) == 0 ); assert( find( "abcab", "ab" ) == 0 ); assert( find( "abc", "bc" ) == 1 ); assert( find( "abc", "ac" ) == 3 ); assert( find( "abrabracadabra", "abracadabra" ) == 3 ); } } } //////////////////////////////////////////////////////////////////////////////// // Reverse Find //////////////////////////////////////////////////////////////////////////////// version( TangoDoc ) { /** * Performs a linear scan of buf from $(LP)buf.length .. 0], returning * the index of the first element matching pat, or buf.length if no match * was found. Comparisons will be performed using the supplied predicate * or '==' if none is supplied. * * Params: * buf = The array to search. * pat = The pattern to search for. * pred = The evaluation predicate, which should return true if e1 is * equal to e2 and false if not. This predicate may be any * callable type. * * Returns: * The index of the first match or buf.length if no match was found. */ size_t rfind( Elem[] buf, Elem pat, Pred2E pred = Pred2E.init ); /** * Performs a linear scan of buf from $(LP)buf.length .. 0], returning * the index of the first element matching pat, or buf.length if no match * was found. Comparisons will be performed using the supplied predicate * or '==' if none is supplied. * * Params: * buf = The array to search. * pat = The pattern to search for. * pred = The evaluation predicate, which should return true if e1 is * equal to e2 and false if not. This predicate may be any * callable type. * * Returns: * The index of the first match or buf.length if no match was found. */ size_t rfind( Elem[] buf, Elem[] pat, Pred2E pred = Pred2E.init ); } else { template rfind_( Elem, Pred = IsEqual!(Elem) ) { static assert( isCallableType!(Pred) ); size_t fn( Elem[] buf, Elem pat, Pred pred = Pred.init ) { if( buf.length == 0 ) return buf.length; size_t pos = buf.length; do { if( pred( buf[--pos], pat ) ) return pos; } while( pos > 0 ); return buf.length; } size_t fn( Elem[] buf, Elem[] pat, Pred pred = Pred.init ) { if( buf.length == 0 || pat.length == 0 || buf.length < pat.length ) { return buf.length; } size_t pos = buf.length - pat.length + 1; do { if( pred( buf[--pos], pat[0] ) ) { size_t mat = 0; do { if( ++mat >= pat.length ) return pos - pat.length + 1; if( ++pos >= buf.length ) return buf.length; } while( pred( buf[pos], pat[mat] ) ); pos -= mat; } } while( pos > 0 ); return buf.length; } } template rfind( Buf, Pat ) { size_t rfind( Buf buf, Pat pat ) { return rfind_!(ElemTypeOf!(Buf)).fn( buf, pat ); } } template rfind( Buf, Pat, Pred ) { size_t rfind( Buf buf, Pat pat, Pred pred ) { return rfind_!(ElemTypeOf!(Buf), Pred).fn( buf, pat, pred ); } } debug( UnitTest ) { unittest { // rfind element assert( rfind( "", 'a' ) == 0 ); assert( rfind( "abc", 'a' ) == 0 ); assert( rfind( "abc", 'b' ) == 1 ); assert( rfind( "abc", 'c' ) == 2 ); assert( rfind( "abc", 'd' ) == 3 ); // null parameters assert( rfind( "", "" ) == 0 ); assert( rfind( "a", "" ) == 1 ); assert( rfind( "", "a" ) == 0 ); // exact match assert( rfind( "abc", "abc" ) == 0 ); // simple substring match assert( rfind( "abc", "a" ) == 0 ); assert( rfind( "abca", "a" ) == 3 ); assert( rfind( "abc", "b" ) == 1 ); assert( rfind( "abc", "c" ) == 2 ); assert( rfind( "abc", "d" ) == 3 ); // multi-char substring match assert( rfind( "abc", "ab" ) == 0 ); assert( rfind( "abcab", "ab" ) == 3 ); assert( rfind( "abc", "bc" ) == 1 ); assert( rfind( "abc", "ac" ) == 3 ); assert( rfind( "abracadabrabra", "abracadabra" ) == 0 ); } } } //////////////////////////////////////////////////////////////////////////////// // KMP Find //////////////////////////////////////////////////////////////////////////////// version( TangoDoc ) { /** * Performs a linear scan of buf from [0 .. buf.length$(RP), returning * the index of the first element matching pat, or buf.length if no match * was found. Comparisons will be performed using the supplied predicate * or '==' if none is supplied. * * This function uses the KMP algorithm and offers O(M+N) performance but * must allocate a temporary buffer of size pat.sizeof to do so. If it is * available on the target system, alloca will be used for the allocation, * otherwise a standard dynamic memory allocation will occur. * * Params: * buf = The array to search. * pat = The pattern to search for. * pred = The evaluation predicate, which should return true if e1 is * equal to e2 and false if not. This predicate may be any * callable type. * * Returns: * The index of the first match or buf.length if no match was found. */ size_t kfind( Elem[] buf, Elem pat, Pred2E pred = Pred2E.init ); /** * Performs a linear scan of buf from [0 .. buf.length$(RP), returning * the index of the first element matching pat, or buf.length if no match * was found. Comparisons will be performed using the supplied predicate * or '==' if none is supplied. * * This function uses the KMP algorithm and offers O(M+N) performance but * must allocate a temporary buffer of size pat.sizeof to do so. If it is * available on the target system, alloca will be used for the allocation, * otherwise a standard dynamic memory allocation will occur. * * Params: * buf = The array to search. * pat = The pattern to search for. * pred = The evaluation predicate, which should return true if e1 is * equal to e2 and false if not. This predicate may be any * callable type. * * Returns: * The index of the first match or buf.length if no match was found. */ size_t kfind( Elem[] buf, Elem[] pat, Pred2E pred = Pred2E.init ); } else { template kfind_( Elem, Pred = IsEqual!(Elem) ) { static assert( isCallableType!(Pred) ); size_t fn( Elem[] buf, Elem pat, Pred pred = Pred.init ) { foreach( size_t pos, Elem cur; buf ) { if( pred( cur, pat ) ) return pos; } return buf.length; } size_t fn( Elem[] buf, Elem[] pat, Pred pred = Pred.init ) { if( buf.length == 0 || pat.length == 0 || buf.length < pat.length ) { return buf.length; } static if( is( alloca ) ) // always false, alloca usage should be rethought { size_t[] func = (cast(size_t*) alloca( (pat.length + 1) * size_t.sizeof ))[0 .. pat.length + 1]; } else { size_t[] func = new size_t[pat.length + 1]; scope( exit ) delete func; // force cleanup } func[0] = 0; // // building prefix-function // for( size_t m = 0, i = 1 ; i < pat.length ; ++i ) { while( ( m > 0 ) && !pred( pat[m], pat[i] ) ) m = func[m - 1]; if( pred( pat[m], pat[i] ) ) ++m; func[i] = m; } // // searching // for( size_t m = 0, i = 0; i < buf.length; ++i ) { while( ( m > 0 ) && !pred( pat[m], buf[i] ) ) m = func[m - 1]; if( pred( pat[m], buf[i] ) ) { ++m; if( m == pat.length ) { return i - pat.length + 1; } } } return buf.length; } } template kfind( Buf, Pat ) { size_t kfind( Buf buf, Pat pat ) { return kfind_!(ElemTypeOf!(Buf)).fn( buf, pat ); } } template kfind( Buf, Pat, Pred ) { size_t kfind( Buf buf, Pat pat, Pred pred ) { return kfind_!(ElemTypeOf!(Buf), Pred).fn( buf, pat, pred ); } } debug( UnitTest ) { unittest { // find element assert( kfind( "", 'a' ) == 0 ); assert( kfind( "abc", 'a' ) == 0 ); assert( kfind( "abc", 'b' ) == 1 ); assert( kfind( "abc", 'c' ) == 2 ); assert( kfind( "abc", 'd' ) == 3 ); // null parameters assert( kfind( "", "" ) == 0 ); assert( kfind( "a", "" ) == 1 ); assert( kfind( "", "a" ) == 0 ); // exact match assert( kfind( "abc", "abc" ) == 0 ); // simple substring match assert( kfind( "abc", "a" ) == 0 ); assert( kfind( "abca", "a" ) == 0 ); assert( kfind( "abc", "b" ) == 1 ); assert( kfind( "abc", "c" ) == 2 ); assert( kfind( "abc", "d" ) == 3 ); // multi-char substring match assert( kfind( "abc", "ab" ) == 0 ); assert( kfind( "abcab", "ab" ) == 0 ); assert( kfind( "abc", "bc" ) == 1 ); assert( kfind( "abc", "ac" ) == 3 ); assert( kfind( "abrabracadabra", "abracadabra" ) == 3 ); } } } //////////////////////////////////////////////////////////////////////////////// // KMP Reverse Find //////////////////////////////////////////////////////////////////////////////// version( TangoDoc ) { /** * Performs a linear scan of buf from $(LP)buf.length .. 0], returning * the index of the first element matching pat, or buf.length if no match * was found. Comparisons will be performed using the supplied predicate * or '==' if none is supplied. * * This function uses the KMP algorithm and offers O(M+N) performance but * must allocate a temporary buffer of size pat.sizeof to do so. If it is * available on the target system, alloca will be used for the allocation, * otherwise a standard dynamic memory allocation will occur. * * Params: * buf = The array to search. * pat = The pattern to search for. * pred = The evaluation predicate, which should return true if e1 is * equal to e2 and false if not. This predicate may be any * callable type. * * Returns: * The index of the first match or buf.length if no match was found. */ size_t krfind( Elem[] buf, Elem pat, Pred2E pred = Pred2E.init ); /** * Performs a linear scan of buf from $(LP)buf.length .. 0], returning * the index of the first element matching pat, or buf.length if no match * was found. Comparisons will be performed using the supplied predicate * or '==' if none is supplied. * * This function uses the KMP algorithm and offers O(M+N) performance but * must allocate a temporary buffer of size pat.sizeof to do so. If it is * available on the target system, alloca will be used for the allocation, * otherwise a standard dynamic memory allocation will occur. * * Params: * buf = The array to search. * pat = The pattern to search for. * pred = The evaluation predicate, which should return true if e1 is * equal to e2 and false if not. This predicate may be any * callable type. * * Returns: * The index of the first match or buf.length if no match was found. */ size_t krfind( Elem[] buf, Elem[] pat, Pred2E pred = Pred2E.init ); } else { template krfind_( Elem, Pred = IsEqual!(Elem) ) { static assert( isCallableType!(Pred) ); size_t fn( Elem[] buf, Elem pat, Pred pred = Pred.init ) { if( buf.length == 0 ) return buf.length; size_t pos = buf.length; do { if( pred( buf[--pos], pat ) ) return pos; } while( pos > 0 ); return buf.length; } size_t fn( Elem[] buf, Elem[] pat, Pred pred = Pred.init ) { if( buf.length == 0 || pat.length == 0 || buf.length < pat.length ) { return buf.length; } static if( is( alloca ) ) // always false, alloca usage should be rethought { size_t[] func = (cast(size_t*) alloca( (pat.length + 1) * size_t.sizeof ))[0 .. pat.length + 1]; } else { size_t[] func = new size_t[pat.length + 1]; scope( exit ) delete func; // force cleanup } func[$ - 1] = 0; // // building prefix-function // for( size_t m = 0, i = pat.length - 1; i > 0; --i ) { while( ( m > 0 ) && !pred( pat[$ - m - 1], pat[i - 1] ) ) m = func[$ - m]; if( pred( pat[$ - m - 1], pat[i - 1] ) ) ++m; func[i - 1] = m; } // // searching // size_t m = 0; size_t i = buf.length; do { --i; while( ( m > 0 ) && !pred( pat[$ - m - 1], buf[i] ) ) m = func[$ - m - 1]; if( pred( pat[$ - m - 1], buf[i] ) ) { ++m; if ( m == pat.length ) { return i; } } } while( i > 0 ); return buf.length; } } template krfind( Buf, Pat ) { size_t krfind( Buf buf, Pat pat ) { return krfind_!(ElemTypeOf!(Buf)).fn( buf, pat ); } } template krfind( Buf, Pat, Pred ) { size_t krfind( Buf buf, Pat pat, Pred pred ) { return krfind_!(ElemTypeOf!(Buf), Pred).fn( buf, pat, pred ); } } debug( UnitTest ) { unittest { // rfind element assert( krfind( "", 'a' ) == 0 ); assert( krfind( "abc", 'a' ) == 0 ); assert( krfind( "abc", 'b' ) == 1 ); assert( krfind( "abc", 'c' ) == 2 ); assert( krfind( "abc", 'd' ) == 3 ); // null parameters assert( krfind( "", "" ) == 0 ); assert( krfind( "a", "" ) == 1 ); assert( krfind( "", "a" ) == 0 ); // exact match assert( krfind( "abc", "abc" ) == 0 ); // simple substring match assert( krfind( "abc", "a" ) == 0 ); assert( krfind( "abca", "a" ) == 3 ); assert( krfind( "abc", "b" ) == 1 ); assert( krfind( "abc", "c" ) == 2 ); assert( krfind( "abc", "d" ) == 3 ); // multi-char substring match assert( krfind( "abc", "ab" ) == 0 ); assert( krfind( "abcab", "ab" ) == 3 ); assert( krfind( "abc", "bc" ) == 1 ); assert( krfind( "abc", "ac" ) == 3 ); assert( krfind( "abracadabrabra", "abracadabra" ) == 0 ); } } } //////////////////////////////////////////////////////////////////////////////// // Find-If //////////////////////////////////////////////////////////////////////////////// version( TangoDoc ) { /** * Performs a linear scan of buf from [0 .. buf.length$(RP), returning * the index of the first element where pred returns true. * * Params: * buf = The array to search. * pred = The evaluation predicate, which should return true if the * element is a valid match and false if not. This predicate * may be any callable type. * * Returns: * The index of the first match or buf.length if no match was found. */ size_t findIf( Elem[] buf, Pred1E pred ); } else { template findIf_( Elem, Pred ) { static assert( isCallableType!(Pred) ); size_t fn( Elem[] buf, Pred pred ) { foreach( size_t pos, Elem cur; buf ) { if( pred( cur ) ) return pos; } return buf.length; } } template findIf( Buf, Pred ) { size_t findIf( Buf buf, Pred pred ) { return findIf_!(ElemTypeOf!(Buf), Pred).fn( buf, pred ); } } debug( UnitTest ) { unittest { assert( findIf( "bcecg", ( char c ) { return c == 'a'; } ) == 5 ); assert( findIf( "bcecg", ( char c ) { return c == 'b'; } ) == 0 ); assert( findIf( "bcecg", ( char c ) { return c == 'c'; } ) == 1 ); assert( findIf( "bcecg", ( char c ) { return c == 'd'; } ) == 5 ); assert( findIf( "bcecg", ( char c ) { return c == 'g'; } ) == 4 ); assert( findIf( "bcecg", ( char c ) { return c == 'h'; } ) == 5 ); } } } //////////////////////////////////////////////////////////////////////////////// // Reverse Find-If //////////////////////////////////////////////////////////////////////////////// version( TangoDoc ) { /** * Performs a linear scan of buf from $(LP)buf.length .. 0], returning * the index of the first element where pred returns true. * * Params: * buf = The array to search. * pred = The evaluation predicate, which should return true if the * element is a valid match and false if not. This predicate * may be any callable type. * * Returns: * The index of the first match or buf.length if no match was found. */ size_t rfindIf( Elem[] buf, Pred1E pred ); } else { template rfindIf_( Elem, Pred ) { static assert( isCallableType!(Pred) ); size_t fn( Elem[] buf, Pred pred ) { if( buf.length == 0 ) return buf.length; size_t pos = buf.length; do { if( pred( buf[--pos] ) ) return pos; } while( pos > 0 ); return buf.length; } } template rfindIf( Buf, Pred ) { size_t rfindIf( Buf buf, Pred pred ) { return rfindIf_!(ElemTypeOf!(Buf), Pred).fn( buf, pred ); } } debug( UnitTest ) { unittest { assert( rfindIf( "bcecg", ( char c ) { return c == 'a'; } ) == 5 ); assert( rfindIf( "bcecg", ( char c ) { return c == 'b'; } ) == 0 ); assert( rfindIf( "bcecg", ( char c ) { return c == 'c'; } ) == 3 ); assert( rfindIf( "bcecg", ( char c ) { return c == 'd'; } ) == 5 ); assert( rfindIf( "bcecg", ( char c ) { return c == 'g'; } ) == 4 ); assert( rfindIf( "bcecg", ( char c ) { return c == 'h'; } ) == 5 ); } } } //////////////////////////////////////////////////////////////////////////////// // Find Adjacent //////////////////////////////////////////////////////////////////////////////// version( TangoDoc ) { /** * Performs a linear scan of buf from [0 .. buf.length$(RP), returning * the index of the first element that compares equal to the next element * in the sequence. Comparisons will be performed using the supplied * predicate or '==' if none is supplied. * * Params: * buf = The array to scan. * pred = The evaluation predicate, which should return true if e1 is * equal to e2 and false if not. This predicate may be any * callable type. * * Returns: * The index of the first match or buf.length if no match was found. */ size_t findAdj( Elem[] buf, Pred2E pred = Pred2E.init ); } else { template findAdj_( Elem, Pred = IsEqual!(Elem) ) { static assert( isCallableType!(Pred) ); size_t fn( Elem[] buf, Pred pred = Pred.init ) { if( buf.length < 2 ) return buf.length; auto sav = cast(BaseTypeOf!(Elem))buf[0]; foreach( size_t pos, Elem cur; buf[1 .. $] ) { if( pred( cur, sav ) ) return pos; sav = cast(BaseTypeOf!(Elem))cur; } return buf.length; } } template findAdj( Buf ) { size_t findAdj( Buf buf ) { return findAdj_!(ElemTypeOf!(Buf)).fn( buf ); } } template findAdj( Buf, Pred ) { size_t findAdj( Buf buf, Pred pred ) { return findAdj_!(ElemTypeOf!(Buf), Pred).fn( buf, pred ); } } debug( UnitTest ) { unittest { assert( findAdj( "aabcdef" ) == 0 ); assert( findAdj( "abcddef" ) == 3 ); assert( findAdj( "abcdeff" ) == 5 ); assert( findAdj( "abcdefg" ) == 7 ); } } } //////////////////////////////////////////////////////////////////////////////// // Contains //////////////////////////////////////////////////////////////////////////////// version( TangoDoc ) { /** * Performs a linear scan of buf from [0 .. buf.length$(RP), returning * true if an element matching pat is found. Comparisons will be performed * using the supplied predicate or '<' if none is supplied. * * Params: * buf = The array to search. * pat = The pattern to search for. * pred = The evaluation predicate, which should return true if e1 is * equal to e2 and false if not. This predicate may be any * callable type. * * Returns: * True if an element equivalent to pat is found, false if not. */ equals_t contains( Elem[] buf, Elem pat, Pred2E pred = Pred2E.init ); /** * Performs a linear scan of buf from [0 .. buf.length$(RP), returning * true if a sequence matching pat is found. Comparisons will be performed * using the supplied predicate or '<' if none is supplied. * * Params: * buf = The array to search. * pat = The pattern to search for. * pred = The evaluation predicate, which should return true if e1 is * equal to e2 and false if not. This predicate may be any * callable type. * * Returns: * True if an element equivalent to pat is found, false if not. */ equals_t contains( Elem[] buf, Elem[] pat, Pred2E pred = Pred2E.init ); } else { template contains( Buf, Pat ) { equals_t contains( Buf buf, Pat pat ) { return cast(equals_t)(find( buf, pat ) != buf.length); } } template contains( Buf, Pat, Pred ) { equals_t contains( Buf buf, Pat pat, Pred pred ) { return cast(equals_t)(find( buf, pat, pred ) != buf.length); } } debug( UnitTest ) { unittest { // find element assert( !contains( "", 'a' ) ); assert( contains( "abc", 'a' ) ); assert( contains( "abc", 'b' ) ); assert( contains( "abc", 'c' ) ); assert( !contains( "abc", 'd' ) ); // null parameters assert( !contains( "", "" ) ); assert( !contains( "a", "" ) ); assert( !contains( "", "a" ) ); // exact match assert( contains( "abc", "abc" ) ); // simple substring match assert( contains( "abc", "a" ) ); assert( contains( "abca", "a" ) ); assert( contains( "abc", "b" ) ); assert( contains( "abc", "c" ) ); assert( !contains( "abc", "d" ) ); // multi-char substring match assert( contains( "abc", "ab" ) ); assert( contains( "abcab", "ab" ) ); assert( contains( "abc", "bc" ) ); assert( !contains( "abc", "ac" ) ); assert( contains( "abrabracadabra", "abracadabra" ) ); } } } //////////////////////////////////////////////////////////////////////////////// // Mismatch //////////////////////////////////////////////////////////////////////////////// version( TangoDoc ) { /** * Performs a parallel linear scan of bufA and bufB from [0 .. N$(RP) * where N = min(bufA.length, bufB.length), returning the index of * the first element in bufA which does not match the corresponding element * in bufB or N if no mismatch occurs. Comparisons will be performed using * the supplied predicate or '==' if none is supplied. * * Params: * bufA = The array to evaluate. * bufB = The array to match against. * pred = The evaluation predicate, which should return true if e1 is * equal to e2 and false if not. This predicate may be any * callable type. * * Returns: * The index of the first mismatch or N if the first N elements of bufA * and bufB match, where N = min$(LP)bufA.length, bufB.length$(RP). */ size_t mismatch( Elem[] bufA, Elem[] bufB, Pred2E pred = Pred2E.init ); } else { template mismatch_( Elem, Pred = IsEqual!(Elem) ) { static assert( isCallableType!(Pred) ); size_t fn( Elem[] bufA, Elem[] bufB, Pred pred = Pred.init ) { size_t posA = 0, posB = 0; while( posA < bufA.length && posB < bufB.length ) { if( !pred( bufB[posB], bufA[posA] ) ) break; ++posA, ++posB; } return posA; } } template mismatch( BufA, BufB ) { size_t mismatch( BufA bufA, BufB bufB ) { return mismatch_!(ElemTypeOf!(BufA)).fn( bufA, bufB ); } } template mismatch( BufA, BufB, Pred ) { size_t mismatch( BufA bufA, BufB bufB, Pred pred ) { return mismatch_!(ElemTypeOf!(BufA), Pred).fn( bufA, bufB, pred ); } } debug( UnitTest ) { unittest { assert( mismatch( "a", "abcdefg" ) == 1 ); assert( mismatch( "abcdefg", "a" ) == 1 ); assert( mismatch( "x", "abcdefg" ) == 0 ); assert( mismatch( "abcdefg", "x" ) == 0 ); assert( mismatch( "xbcdefg", "abcdefg" ) == 0 ); assert( mismatch( "abcdefg", "xbcdefg" ) == 0 ); assert( mismatch( "abcxefg", "abcdefg" ) == 3 ); assert( mismatch( "abcdefg", "abcxefg" ) == 3 ); assert( mismatch( "abcdefx", "abcdefg" ) == 6 ); assert( mismatch( "abcdefg", "abcdefx" ) == 6 ); } } } //////////////////////////////////////////////////////////////////////////////// // Count //////////////////////////////////////////////////////////////////////////////// version( TangoDoc ) { /** * Performs a linear scan of buf from [0 .. buf.length$(RP), returning * a count of the number of elements matching pat. Comparisons will be * performed using the supplied predicate or '==' if none is supplied. * * Params: * buf = The array to scan. * pat = The pattern to match. * pred = The evaluation predicate, which should return true if e1 is * equal to e2 and false if not. This predicate may be any * callable type. * * Returns: * The number of elements matching pat. */ size_t count( Elem[] buf, Elem pat, Pred2E pred = Pred2E.init ); } else { template count_( Elem, Pred = IsEqual!(Elem) ) { static assert( isCallableType!(Pred) ); size_t fn( Elem[] buf, Elem pat, Pred pred = Pred.init ) { size_t cnt = 0; foreach( size_t pos, Elem cur; buf ) { if( pred( cur, pat ) ) ++cnt; } return cnt; } } template count( Buf, Pat ) { size_t count( Buf buf, Pat pat ) { return count_!(ElemTypeOf!(Buf)).fn( buf, pat ); } } template count( Buf, Pat, Pred ) { size_t count( Buf buf, Pat pat, Pred pred ) { return count_!(ElemTypeOf!(Buf), Pred).fn( buf, pat, pred ); } } debug( UnitTest ) { unittest { assert( count( "gbbbi", 'a' ) == 0 ); assert( count( "gbbbi", 'g' ) == 1 ); assert( count( "gbbbi", 'b' ) == 3 ); assert( count( "gbbbi", 'i' ) == 1 ); assert( count( "gbbbi", 'd' ) == 0 ); } } } //////////////////////////////////////////////////////////////////////////////// // Count-If //////////////////////////////////////////////////////////////////////////////// version( TangoDoc ) { /** * Performs a linear scan of buf from [0 .. buf.length$(RP), returning * a count of the number of elements where pred returns true. * * Params: * buf = The array to scan. * pred = The evaluation predicate, which should return true if the * element is a valid match and false if not. This predicate * may be any callable type. * * Returns: * The number of elements where pred returns true. */ size_t countIf( Elem[] buf, Pred1E pred = Pred1E.init ); } else { template countIf_( Elem, Pred ) { static assert( isCallableType!(Pred) ); size_t fn( Elem[] buf, Pred pred ) { size_t cnt = 0; foreach( size_t pos, Elem cur; buf ) { if( pred( cur ) ) ++cnt; } return cnt; } } template countIf( Buf, Pred ) { size_t countIf( Buf buf, Pred pred ) { return countIf_!(ElemTypeOf!(Buf), Pred).fn( buf, pred ); } } debug( UnitTest ) { unittest { assert( countIf( "gbbbi", ( char c ) { return c == 'a'; } ) == 0 ); assert( countIf( "gbbbi", ( char c ) { return c == 'g'; } ) == 1 ); assert( countIf( "gbbbi", ( char c ) { return c == 'b'; } ) == 3 ); assert( countIf( "gbbbi", ( char c ) { return c == 'i'; } ) == 1 ); assert( countIf( "gbbbi", ( char c ) { return c == 'd'; } ) == 0 ); } } } //////////////////////////////////////////////////////////////////////////////// // Replace //////////////////////////////////////////////////////////////////////////////// version( TangoDoc ) { /** * Performs a linear scan of buf from [0 .. buf.length$(RP), replacing * occurrences of pat with val. Comparisons will be performed using the * supplied predicate or '==' if none is supplied. * * Params: * buf = The array to scan. * pat = The pattern to match. * val = The value to substitute. * pred = The evaluation predicate, which should return true if e1 is * equal to e2 and false if not. This predicate may be any * callable type. * * Returns: * The number of elements replaced. */ size_t replace( Elem[] buf, Elem pat, Elem val, Pred2E pred = Pred2E.init ); } else { template replace_( Elem, Pred = IsEqual!(Elem) ) { static assert( isCallableType!(Pred) ); size_t fn( Elem[] buf, Elem pat, Elem val, Pred pred = Pred.init ) { size_t cnt = 0; foreach( size_t pos, ref Elem cur; buf ) { if( pred( cur, pat ) ) { cur = val; ++cnt; } } return cnt; } } template replace( Buf, Elem ) { size_t replace( Buf buf, Elem pat, Elem val ) { return replace_!(ElemTypeOf!(Buf)).fn( buf, pat, val ); } } template replace( Buf, Elem, Pred ) { size_t replace( Buf buf, Elem pat, Elem val, Pred pred ) { return replace_!(ElemTypeOf!(Buf), Pred).fn( buf, pat, val, pred ); } } debug( UnitTest ) { unittest { assert( replace( "gbbbi".dup, 'a', 'b' ) == 0 ); assert( replace( "gbbbi".dup, 'g', 'h' ) == 1 ); assert( replace( "gbbbi".dup, 'b', 'c' ) == 3 ); assert( replace( "gbbbi".dup, 'i', 'j' ) == 1 ); assert( replace( "gbbbi".dup, 'd', 'e' ) == 0 ); } } } //////////////////////////////////////////////////////////////////////////////// // Replace-If //////////////////////////////////////////////////////////////////////////////// version( TangoDoc ) { /** * Performs a linear scan of buf from [0 .. buf.length$(RP), replacing * elements where pred returns true with val. * * Params: * buf = The array to scan. * val = The value to substitute. * pred = The evaluation predicate, which should return true if the * element is a valid match and false if not. This predicate * may be any callable type. * * Returns: * The number of elements replaced. */ size_t replaceIf( Elem[] buf, Elem val, Pred2E pred = Pred2E.init ); } else { template replaceIf_( Elem, Pred ) { static assert( isCallableType!(Pred) ); size_t fn( Elem[] buf, Elem val, Pred pred ) { size_t cnt = 0; foreach( size_t pos, ref Elem cur; buf ) { if( pred( cur ) ) { cur = val; ++cnt; } } return cnt; } } template replaceIf( Buf, Elem, Pred ) { size_t replaceIf( Buf buf, Elem val, Pred pred ) { return replaceIf_!(ElemTypeOf!(Buf), Pred).fn( buf, val, pred ); } } debug( UnitTest ) { unittest { assert( replaceIf( "gbbbi".dup, 'b', ( char c ) { return c == 'a'; } ) == 0 ); assert( replaceIf( "gbbbi".dup, 'h', ( char c ) { return c == 'g'; } ) == 1 ); assert( replaceIf( "gbbbi".dup, 'c', ( char c ) { return c == 'b'; } ) == 3 ); assert( replaceIf( "gbbbi".dup, 'j', ( char c ) { return c == 'i'; } ) == 1 ); assert( replaceIf( "gbbbi".dup, 'e', ( char c ) { return c == 'd'; } ) == 0 ); } } } //////////////////////////////////////////////////////////////////////////////// // Remove //////////////////////////////////////////////////////////////////////////////// version( TangoDoc ) { /** * Performs a linear scan of buf from [0 .. buf.length$(RP), moving all * elements matching pat to the end of the sequence. The relative order of * elements not matching pat will be preserved. Comparisons will be * performed using the supplied predicate or '==' if none is supplied. * * Params: * buf = The array to scan. This parameter is not marked 'ref' * to allow temporary slices to be modified. As buf is not resized * in any way, omitting the 'ref' qualifier has no effect on the * result of this operation, even though it may be viewed as a * side-effect. * pat = The pattern to match against. * pred = The evaluation predicate, which should return true if e1 is * equal to e2 and false if not. This predicate may be any * callable type. * * Returns: * The number of elements that do not match pat. */ size_t remove( Elem[] buf, Elem pat, Pred2E pred = Pred2E.init ); /** * Performs a linear scan of buf from [0 .. buf.length$(RP), moving all * elements matching pat to the end of the sequence. The relative order of * elements not matching pat will be preserved. Comparisons will be * performed '=='. * * Params: * buf = The array to scan. This parameter is not marked 'ref' * to allow temporary slices to be modified. As buf is not resized * in any way, omitting the 'ref' qualifier has no effect on the * result of this operation, even though it may be viewed as a * side-effect. * pat = The pattern to match against. * * Returns: * The number of elements that do not match pat. */ size_t remove( Elem[] buf, Elem pat ); } else { template remove_( Elem, Pred = IsEqual!(Elem) ) { static assert( isCallableType!(Pred) ); size_t fn( Elem[] buf, Elem pat, Pred pred = Pred.init ) { // NOTE: Indexes are passed instead of references because DMD does // not inline the reference-based version. void exch( size_t p1, size_t p2 ) { Elem t = buf[p1]; buf[p1] = buf[p2]; buf[p2] = t; } size_t cnt = 0; for( size_t pos = 0, len = buf.length; pos < len; ++pos ) { if( pred( buf[pos], pat ) ) ++cnt; else exch( pos, pos - cnt ); } return buf.length - cnt; } } template remove( Buf, Pat ) { size_t remove( Buf buf, Pat pat ) { return remove_!(ElemTypeOf!(Buf)).fn( buf, pat ); } } template remove( Buf, Pat, Pred ) { size_t remove( Buf buf, Pat pat, Pred pred ) { return remove_!(ElemTypeOf!(Buf), Pred).fn( buf, pat, pred ); } } debug( UnitTest ) { unittest { void test( char[] buf, char pat, size_t num ) { assert( remove( buf, pat ) == num ); foreach( pos, cur; buf ) { assert( pos < num ? cur != pat : cur == pat ); } } test( "abcdefghij".dup, 'x', 10 ); test( "xabcdefghi".dup, 'x', 9 ); test( "abcdefghix".dup, 'x', 9 ); test( "abxxcdefgh".dup, 'x', 8 ); test( "xaxbcdxxex".dup, 'x', 5 ); } } } //////////////////////////////////////////////////////////////////////////////// // Remove-If //////////////////////////////////////////////////////////////////////////////// version( TangoDoc ) { /** * Performs a linear scan of buf from [0 .. buf.length$(RP), moving all * elements that satisfy pred to the end of the sequence. The relative * order of elements that do not satisfy pred will be preserved. * * Params: * buf = The array to scan. This parameter is not marked 'ref' * to allow temporary slices to be modified. As buf is not resized * in any way, omitting the 'ref' qualifier has no effect on the * result of this operation, even though it may be viewed as a * side-effect. * pred = The evaluation predicate, which should return true if the * element satisfies the condition and false if not. This * predicate may be any callable type. * * Returns: * The number of elements that do not satisfy pred. */ size_t removeIf( Elem[] buf, Pred1E pred ); } else { template removeIf_( Elem, Pred ) { static assert( isCallableType!(Pred) ); size_t fn( Elem[] buf, Pred pred ) { // NOTE: Indexes are passed instead of references because DMD does // not inline the reference-based version. void exch( size_t p1, size_t p2 ) { Elem t = buf[p1]; buf[p1] = buf[p2]; buf[p2] = t; } size_t cnt = 0; for( size_t pos = 0, len = buf.length; pos < len; ++pos ) { if( pred( buf[pos] ) ) ++cnt; else exch( pos, pos - cnt ); } return buf.length - cnt; } } template removeIf( Buf, Pred ) { size_t removeIf( Buf buf, Pred pred ) { return removeIf_!(ElemTypeOf!(Buf), Pred).fn( buf, pred ); } } debug( UnitTest ) { unittest { void test( char[] buf, bool delegate( char ) dg, size_t num ) { assert( removeIf( buf, dg ) == num ); foreach( pos, cur; buf ) { assert( pos < num ? !dg( cur ) : dg( cur ) ); } } test( "abcdefghij".dup, ( char c ) { return c == 'x'; }, 10 ); test( "xabcdefghi".dup, ( char c ) { return c == 'x'; }, 9 ); test( "abcdefghix".dup, ( char c ) { return c == 'x'; }, 9 ); test( "abxxcdefgh".dup, ( char c ) { return c == 'x'; }, 8 ); test( "xaxbcdxxex".dup, ( char c ) { return c == 'x'; }, 5 ); } } } //////////////////////////////////////////////////////////////////////////////// // Unique //////////////////////////////////////////////////////////////////////////////// version( TangoDoc ) { /** * Performs a linear scan of buf from [0 .. buf.length$(RP), moving all * but the first element of each consecutive group of duplicate elements to * the end of the sequence. The relative order of all remaining elements * will be preserved. Comparisons will be performed using the supplied * predicate or '==' if none is supplied. * * Params: * buf = The array to scan. This parameter is not marked 'ref' * to allow temporary slices to be modified. As buf is not resized * in any way, omitting the 'ref' qualifier has no effect on the * result of this operation, even though it may be viewed as a * side-effect. * pred = The evaluation predicate, which should return true if e1 is * equal to e2 and false if not. This predicate may be any * callable type. * * Returns: * The number of distinct sub-sequences in buf. */ size_t distinct( Elem[] buf, Pred2E pred = Pred2E.init ); } else { template distinct_( Elem, Pred = IsEqual!(Elem) ) { static assert( isCallableType!(Pred) ); size_t fn( Elem[] buf, Pred pred = Pred.init ) { // NOTE: Indexes are passed instead of references because DMD does // not inline the reference-based version. void exch( size_t p1, size_t p2 ) { Elem t = buf[p1]; buf[p1] = buf[p2]; buf[p2] = t; } if( buf.length < 2 ) return buf.length; size_t cnt = 0; Elem pat = buf[0]; for( size_t pos = 1, len = buf.length; pos < len; ++pos ) { if( pred( buf[pos], pat ) ) ++cnt; else { pat = buf[pos]; exch( pos, pos - cnt ); } } return buf.length - cnt; } } template distinct( Buf ) { size_t distinct( Buf buf ) { return distinct_!(ElemTypeOf!(Buf)).fn( buf ); } } template distinct( Buf, Pred ) { size_t distinct( Buf buf, Pred pred ) { return distinct_!(ElemTypeOf!(Buf), Pred).fn( buf, pred ); } } debug( UnitTest ) { unittest { void test( char[] buf, char[] pat ) { assert( distinct( buf ) == pat.length ); foreach( pos, cur; pat ) { assert( buf[pos] == cur ); } } test( "abcdefghij".dup, "abcdefghij".dup ); test( "aabcdefghi".dup, "abcdefghi".dup ); test( "bcdefghijj".dup, "bcdefghij".dup ); test( "abccdefghi".dup, "abcdefghi".dup ); test( "abccdddefg".dup, "abcdefg".dup ); } } } //////////////////////////////////////////////////////////////////////////////// // Shuffle //////////////////////////////////////////////////////////////////////////////// version( TangoDoc ) { /** * Performs a linear scan of buf from [2 .. buf.length$(RP), exchanging * each element with an element in the range [0 .. pos$(RP), where pos * represents the current array position. * * Params: * buf = The array to shuffle. * oper = The randomize operation, which should return a number in the * range [0 .. N$(RP) for any supplied value N. This routine * may be any callable type. */ void shuffle( Elem[] buf, Oper1A oper = Oper1A.init ); } else { template shuffle_( Elem, Oper ) { static assert( isCallableType!(Oper) ); void fn( Elem[] buf, Oper oper ) { // NOTE: Indexes are passed instead of references because DMD does // not inline the reference-based version. void exch( size_t p1, size_t p2 ) { Elem t = buf[p1]; buf[p1] = buf[p2]; buf[p2] = t; } for( size_t pos = buf.length - 1; pos > 0; --pos ) { exch( pos, oper( pos + 1 ) ); } } } template shuffle( Buf, Oper = RandOper!() ) { void shuffle( Buf buf, Oper oper = Oper.init ) { return shuffle_!(ElemTypeOf!(Buf), Oper).fn( buf, oper ); } } debug( UnitTest ) { unittest { char[] buf = "abcdefghijklmnopqrstuvwxyz".dup; char[] tmp = buf.dup; assert( tmp == buf ); shuffle( tmp ); assert( tmp != buf ); } } } //////////////////////////////////////////////////////////////////////////////// // Partition //////////////////////////////////////////////////////////////////////////////// version( TangoDoc ) { /** * Partitions buf such that all elements that satisfy pred will be placed * before the elements that do not satisfy pred. The algorithm is not * required to be stable. * * Params: * buf = The array to partition. This parameter is not marked 'ref' * to allow temporary slices to be sorted. As buf is not resized * in any way, omitting the 'ref' qualifier has no effect on * the result of this operation, even though it may be viewed * as a side-effect. * pred = The evaluation predicate, which should return true if the * element satisfies the condition and false if not. This * predicate may be any callable type. * * Returns: * The number of elements that satisfy pred. */ size_t partition( Elem[] buf, Pred1E pred ); } else { template partition_( Elem, Pred = IsLess!(Elem) ) { static assert( isCallableType!(Pred ) ); size_t fn( Elem[] buf, Pred pred ) { // NOTE: Indexes are passed instead of references because DMD does // not inline the reference-based version. void exch( size_t p1, size_t p2 ) { Elem t = buf[p1]; buf[p1] = buf[p2]; buf[p2] = t; } if( buf.length < 1 ) return 0; size_t l = 0, r = buf.length, i = l, j = r - 1; while( true ) { while( i < r && pred( buf[i] ) ) ++i; while( j > l && !pred( buf[j] ) ) --j; if( i >= j ) break; exch( i++, j-- ); } return i; } } template partition( Buf, Pred ) { size_t partition( Buf buf, Pred pred ) { return partition_!(ElemTypeOf!(Buf), Pred).fn( buf, pred ); } } debug( UnitTest ) { unittest { void test( char[] buf, bool delegate( char ) dg, size_t num ) { assert( partition( buf, dg ) == num ); for( size_t pos = 0; pos < buf.length; ++pos ) { assert( pos < num ? dg( buf[pos] ) : !dg( buf[pos] ) ); } } test( "abcdefg".dup, ( char c ) { return c < 'a'; }, 0 ); test( "gfedcba".dup, ( char c ) { return c < 'a'; }, 0 ); test( "abcdefg".dup, ( char c ) { return c < 'h'; }, 7 ); test( "gfedcba".dup, ( char c ) { return c < 'h'; }, 7 ); test( "abcdefg".dup, ( char c ) { return c < 'd'; }, 3 ); test( "gfedcba".dup, ( char c ) { return c < 'd'; }, 3 ); test( "bbdaabc".dup, ( char c ) { return c < 'c'; }, 5 ); test( "f".dup, ( char c ) { return c == 'f'; }, 1 ); } } } //////////////////////////////////////////////////////////////////////////////// // Select //////////////////////////////////////////////////////////////////////////////// version( TangoDoc ) { /** * Partitions buf with num - 1 as a pivot such that the first num elements * will be less than or equal to the remaining elements in the array. * Comparisons will be performed using the supplied predicate or '<' if * none is supplied. The algorithm is not required to be stable. * * Params: * buf = The array to partition. This parameter is not marked 'ref' * to allow temporary slices to be sorted. As buf is not resized * in any way, omitting the 'ref' qualifier has no effect on * the result of this operation, even though it may be viewed * as a side-effect. * num = The number of elements which are considered significant in * this array, where num - 1 is the pivot around which partial * sorting will occur. For example, if num is buf.length / 2 * then select will effectively partition the array around its * median value, with the elements in the first half of the array * evaluating as less than or equal to the elements in the second * half. * pred = The evaluation predicate, which should return true if e1 is * less than e2 and false if not. This predicate may be any * callable type. * * Returns: * The index of the pivot point, which will be the lesser of num - 1 and * buf.length. */ size_t select( Elem[] buf, Num num, Pred2E pred = Pred2E.init ); } else { template select_( Elem, Pred = IsLess!(Elem) ) { static assert( isCallableType!(Pred ) ); size_t fn( Elem[] buf, size_t num, Pred pred = Pred.init ) { // NOTE: Indexes are passed instead of references because DMD does // not inline the reference-based version. void exch( size_t p1, size_t p2 ) { Elem t = buf[p1]; buf[p1] = buf[p2]; buf[p2] = t; } if( buf.length < 2 ) return buf.length; size_t l = 0, r = buf.length - 1, k = num; while( r > l ) { size_t i = l, j = r - 1; Elem v = buf[r]; while( true ) { while( i < r && pred( buf[i], v ) ) ++i; while( j > l && pred( v, buf[j] ) ) --j; if( i >= j ) break; exch( i++, j-- ); } exch( i, r ); if( i >= k ) r = i - 1; if( i <= k ) l = i + 1; } return num - 1; } } template select( Buf, Num ) { size_t select( Buf buf, Num num ) { return select_!(ElemTypeOf!(Buf)).fn( buf, num ); } } template select( Buf, Num, Pred ) { size_t select( Buf buf, Num num, Pred pred ) { return select_!(ElemTypeOf!(Buf), Pred).fn( buf, num, pred ); } } debug( UnitTest ) { unittest { char[] buf = "efedcaabca".dup; size_t num = buf.length / 2; size_t pos = select( buf, num ); assert( pos == num - 1 ); foreach( cur; buf[0 .. pos] ) assert( cur <= buf[pos] ); foreach( cur; buf[pos .. $] ) assert( cur >= buf[pos] ); } } } //////////////////////////////////////////////////////////////////////////////// // Sort //////////////////////////////////////////////////////////////////////////////// version( TangoDoc ) { /** * Sorts buf using the supplied predicate or '<' if none is supplied. The * algorithm is not required to be stable. The current implementation is * based on quicksort, but uses a three-way partitioning scheme to improve * performance for ranges containing duplicate values (Bentley and McIlroy, * 1993). * * Params: * buf = The array to sort. This parameter is not marked 'ref' to * allow temporary slices to be sorted. As buf is not resized * in any way, omitting the 'ref' qualifier has no effect on * the result of this operation, even though it may be viewed * as a side-effect. * pred = The evaluation predicate, which should return true if e1 is * less than e2 and false if not. This predicate may be any * callable type. */ void sort( Elem, Pred2E = IsLess!(Elem) )( Elem[] buf, Pred2E pred = Pred2E.init ); } else { template sort_( Elem, Pred = IsLess!(Elem) ) { static assert( isCallableType!(Pred ) ); void fn( Elem[] buf, Pred pred = Pred.init ) { bool equiv( Elem p1, Elem p2 ) { return !pred( p1, p2 ) && !pred( p2, p1 ); } // NOTE: Indexes are passed instead of references because DMD does // not inline the reference-based version. void exch( size_t p1, size_t p2 ) { Elem t = buf[p1]; buf[p1] = buf[p2]; buf[p2] = t; } // NOTE: This algorithm operates on the inclusive range [l .. r]. void insertionSort( size_t l, size_t r ) { for( size_t i = r; i > l; --i ) { // swap the min element to buf[0] to act as a sentinel if( pred( buf[i], buf[i - 1] ) ) exch( i, i - 1 ); } for( size_t i = l + 2; i <= r; ++i ) { size_t j = i; Elem v = buf[i]; // don't need to test (j != l) because of the sentinel while( pred( v, buf[j - 1] ) ) { buf[j] = buf[j - 1]; j--; } buf[j] = v; } } size_t medianOf( size_t l, size_t m, size_t r ) { if( pred( buf[m], buf[l] ) ) { if( pred( buf[r], buf[m] ) ) return m; else { if( pred( buf[r], buf[l] ) ) return r; else return l; } } else { if( pred( buf[r], buf[m] ) ) { if( pred( buf[r], buf[l] ) ) return l; else return r; } else return m; } } // NOTE: This algorithm operates on the inclusive range [l .. r]. void quicksort( size_t l, size_t r, size_t d ) { if( r <= l ) return; // HEURISTIC: Use insertion sort for sufficiently small arrays. enum { MIN_LENGTH = 80 } if( r - l < MIN_LENGTH ) return insertionSort( l, r ); // HEURISTIC: If the recursion depth is too great, assume this // is a worst-case array and fail to heap sort. if( d-- == 0 ) { makeHeap( buf[l .. r+1], pred ); sortHeap( buf[l .. r+1], pred ); return; } // HEURISTIC: Use the median-of-3 value as a pivot. Swap this // into r so quicksort remains untouched. exch( r, medianOf( l, l + (r - l) / 2, r ) ); // This implementation of quicksort improves upon the classic // algorithm by partitioning the array into three parts, one // each for keys smaller than, equal to, and larger than the // partitioning element, v: // // |--less than v--|--equal to v--|--greater than v--[v] // l j i r // // This approach sorts ranges containing duplicate elements // more quickly. During processing, the following situation // is maintained: // // |--equal--|--less--|--[###]--|--greater--|--equal--[v] // l p i j q r // // Please note that this implementation varies from the typical // algorithm by replacing the use of signed index values with // unsigned values. Elem v = buf[r]; size_t i = l, j = r, p = l, q = r; while( true ) { while( pred( buf[i], v ) ) ++i; while( pred( v, buf[--j] ) ) if( j == l ) break; if( i >= j ) break; exch( i, j ); if( equiv( buf[i], v ) ) exch( p++, i ); if( equiv( v, buf[j] ) ) exch( --q, j ); ++i; } exch( i, r ); if( p < i ) { j = i - 1; for( size_t k = l; k < p; k++, j-- ) exch( k, j ); quicksort( l, j, d ); } if( ++i < q ) { for( size_t k = r - 1; k >= q; k--, i++ ) exch( k, i ); quicksort( i, r, d ); } } size_t maxDepth( size_t x ) { size_t d = 0; do { ++d; x /= 2; } while( x > 1 ); return d * 2; // same as "floor( log( x ) / log( 2 ) ) * 2" } if( buf.length > 1 ) { quicksort( 0, buf.length - 1, maxDepth( buf.length ) ); } } } template sort( Buf ) { void sort( Buf buf ) { return sort_!(ElemTypeOf!(Buf)).fn( buf ); } } template sort( Buf, Pred ) { void sort( Buf buf, Pred pred ) { return sort_!(ElemTypeOf!(Buf), Pred).fn( buf, pred ); } } debug( UnitTest ) { unittest { void test( char[] buf ) { sort( buf ); char sav = buf[0]; foreach( cur; buf ) { assert( cur >= sav ); sav = cur; } } test( "mkcvalsidivjoaisjdvmzlksvdjioawmdsvmsdfefewv".dup ); test( "asdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdf".dup ); test( "the quick brown fox jumped over the lazy dog".dup ); test( "abcdefghijklmnopqrstuvwxyz".dup ); test( "zyxwvutsrqponmlkjihgfedcba".dup ); } } } //////////////////////////////////////////////////////////////////////////////// // Lower Bound //////////////////////////////////////////////////////////////////////////////// version( TangoDoc ) { /** * Performs a binary search of buf, returning the index of the first * location where pat may be inserted without disrupting sort order. If * the sort order of pat precedes all elements in buf then 0 will be * returned. If the sort order of pat succeeds the largest element in buf * then buf.length will be returned. Comparisons will be performed using * the supplied predicate or '<' if none is supplied. * * Params: * buf = The sorted array to search. * pat = The pattern to search for. * pred = The evaluation predicate, which should return true if e1 is * less than e2 and false if not. This predicate may be any * callable type. * * Returns: * The index of the first match or buf.length if no match was found. */ size_t lbound( Elem[] buf, Elem pat, Pred2E pred = Pred2E.init ); } else { template lbound_( Elem, Pred = IsLess!(Elem) ) { static assert( isCallableType!(Pred) ); size_t fn( Elem[] buf, Elem pat, Pred pred = Pred.init ) { size_t beg = 0, end = buf.length, mid = end / 2; while( beg < end ) { if( pred( buf[mid], pat ) ) beg = mid + 1; else end = mid; mid = beg + ( end - beg ) / 2; } return mid; } } template lbound( Buf, Pat ) { size_t lbound( Buf buf, Pat pat ) { return lbound_!(ElemTypeOf!(Buf)).fn( buf, pat ); } } template lbound( Buf, Pat, Pred ) { size_t lbound( Buf buf, Pat pat, Pred pred ) { return lbound_!(ElemTypeOf!(Buf), Pred).fn( buf, pat, pred ); } } debug( UnitTest ) { unittest { assert( lbound( "bcefg", 'a' ) == 0 ); assert( lbound( "bcefg", 'h' ) == 5 ); assert( lbound( "bcefg", 'd' ) == 2 ); assert( lbound( "bcefg", 'e' ) == 2 ); } } } //////////////////////////////////////////////////////////////////////////////// // Upper Bound //////////////////////////////////////////////////////////////////////////////// version( TangoDoc ) { /** * Performs a binary search of buf, returning the index of the first * location beyond where pat may be inserted without disrupting sort order. * If the sort order of pat precedes all elements in buf then 0 will be * returned. If the sort order of pat succeeds the largest element in buf * then buf.length will be returned. Comparisons will be performed using * the supplied predicate or '<' if none is supplied. * * Params: * buf = The sorted array to search. * pat = The pattern to search for. * pred = The evaluation predicate, which should return true if e1 is * less than e2 and false if not. This predicate may be any * callable type. * * Returns: * The index of the first match or buf.length if no match was found. */ size_t ubound( Elem[] buf, Elem pat, Pred2E pred = Pred2E.init ); } else { template ubound_( Elem, Pred = IsLess!(Elem) ) { static assert( isCallableType!(Pred) ); size_t fn( Elem[] buf, Elem pat, Pred pred = Pred.init ) { size_t beg = 0, end = buf.length, mid = end / 2; while( beg < end ) { if( !pred( pat, buf[mid] ) ) beg = mid + 1; else end = mid; mid = beg + ( end - beg ) / 2; } return mid; } } template ubound( Buf, Pat ) { size_t ubound( Buf buf, Pat pat ) { return ubound_!(ElemTypeOf!(Buf)).fn( buf, pat ); } } template ubound( Buf, Pat, Pred ) { size_t ubound( Buf buf, Pat pat, Pred pred ) { return ubound_!(ElemTypeOf!(Buf), Pred).fn( buf, pat, pred ); } } debug( UnitTest ) { unittest { assert( ubound( "bcefg", 'a' ) == 0 ); assert( ubound( "bcefg", 'h' ) == 5 ); assert( ubound( "bcefg", 'd' ) == 2 ); assert( ubound( "bcefg", 'e' ) == 3 ); } } } //////////////////////////////////////////////////////////////////////////////// // Binary Search //////////////////////////////////////////////////////////////////////////////// version( TangoDoc ) { /** * Performs a binary search of buf, returning true if an element equivalent * to pat is found. Comparisons will be performed using the supplied * predicate or '<' if none is supplied. * * Params: * buf = The sorted array to search. * pat = The pattern to search for. * pred = The evaluation predicate, which should return true if e1 is * less than e2 and false if not. This predicate may be any * callable type. * * Returns: * True if an element equivalent to pat is found, false if not. */ bool bsearch( Elem[] buf, Elem pat, Pred2E pred = Pred2E.init ); } else { template bsearch_( Elem, Pred = IsLess!(Elem) ) { static assert( isCallableType!(Pred) ); bool fn( Elem[] buf, Elem pat, Pred pred = Pred.init ) { size_t pos = lbound( buf, pat, pred ); return pos < buf.length && !( pat < buf[pos] ); } } template bsearch( Buf, Pat ) { bool bsearch( Buf buf, Pat pat ) { return bsearch_!(ElemTypeOf!(Buf)).fn( buf, pat ); } } template bsearch( Buf, Pat, Pred ) { bool bsearch( Buf buf, Pat pat, Pred pred ) { return bsearch_!(ElemTypeOf!(Buf), Pred).fn( buf, pat, pred ); } } debug( UnitTest ) { unittest { assert( !bsearch( "bcefg", 'a' ) ); assert( bsearch( "bcefg", 'b' ) ); assert( bsearch( "bcefg", 'c' ) ); assert( !bsearch( "bcefg", 'd' ) ); assert( bsearch( "bcefg", 'e' ) ); assert( bsearch( "bcefg", 'f' ) ); assert( bsearch( "bcefg", 'g' ) ); assert( !bsearch( "bcefg", 'h' ) ); } } } //////////////////////////////////////////////////////////////////////////////// // Includes //////////////////////////////////////////////////////////////////////////////// version( TangoDoc ) { /** * Performs a parallel linear scan of setA and setB from [0 .. N$(RP) * where N = min(setA.length, setB.length), returning true if setA * includes all elements in setB and false if not. Both setA and setB are * required to be sorted, and duplicates in setB require an equal number of * duplicates in setA. Comparisons will be performed using the supplied * predicate or '<' if none is supplied. * * Params: * setA = The sorted array to evaluate. * setB = The sorted array to match against. * pred = The evaluation predicate, which should return true if e1 is * less than e2 and false if not. This predicate may be any * callable type. * * Returns: * True if setA includes all elements in setB, false if not. */ bool includes( Elem[] setA, Elem[] setB, Pred2E pred = Pred2E.init ); } else { template includes_( Elem, Pred = IsLess!(Elem) ) { static assert( isCallableType!(Pred ) ); bool fn( Elem[] setA, Elem[] setB, Pred pred = Pred.init ) { size_t posA = 0, posB = 0; while( posA < setA.length && posB < setB.length ) { if( pred( setB[posB], setA[posA] ) ) return false; else if( pred( setA[posA], setB[posB] ) ) ++posA; else ++posA, ++posB; } return posB == setB.length; } } template includes( BufA, BufB ) { bool includes( BufA setA, BufB setB ) { return includes_!(ElemTypeOf!(BufA)).fn( setA, setB ); } } template includes( BufA, BufB, Pred ) { bool includes( BufA setA, BufB setB, Pred pred ) { return includes_!(ElemTypeOf!(BufA), Pred).fn( setA, setB, pred ); } } debug( UnitTest ) { unittest { assert( includes( "abcdefg", "a" ) ); assert( includes( "abcdefg", "g" ) ); assert( includes( "abcdefg", "d" ) ); assert( includes( "abcdefg", "abcdefg" ) ); assert( includes( "aaaabbbcdddefgg", "abbbcdefg" ) ); assert( !includes( "abcdefg", "aaabcdefg" ) ); assert( !includes( "abcdefg", "abcdefggg" ) ); assert( !includes( "abbbcdefg", "abbbbcdefg" ) ); } } } //////////////////////////////////////////////////////////////////////////////// // Union Of //////////////////////////////////////////////////////////////////////////////// version( TangoDoc ) { /** * Computes the union of setA and setB as a set operation and returns the * retult in a new sorted array. Both setA and setB are required to be * sorted. If either setA or setB contain duplicates, the result will * contain the larger number of duplicates from setA and setB. When an * overlap occurs, entries will be copied from setA. Comparisons will be * performed using the supplied predicate or '<' if none is supplied. * * Params: * setA = The first sorted array to evaluate. * setB = The second sorted array to evaluate. * pred = The evaluation predicate, which should return true if e1 is * less than e2 and false if not. This predicate may be any * callable type. * * Returns: * A new array containing the union of setA and setB. */ Elem[] unionOf( Elem[] setA, Elem[] setB, Pred2E pred = Pred2E.init ); } else { template unionOf_( Elem, Pred = IsLess!(Elem) ) { static assert( isCallableType!(Pred ) ); Elem[] fn( Elem[] setA, Elem[] setB, Pred pred = Pred.init ) { size_t posA = 0, posB = 0; Elem[] setU; while( posA < setA.length && posB < setB.length ) { if( pred( setA[posA], setB[posB] ) ) setU ~= setA[posA++]; else if( pred( setB[posB], setA[posA] ) ) setU ~= setB[posB++]; else setU ~= setA[posA++], posB++; } setU ~= setA[posA .. $]; setU ~= setB[posB .. $]; return setU; } } template unionOf( BufA, BufB ) { ElemTypeOf!(BufA)[] unionOf( BufA setA, BufB setB ) { return unionOf_!(ElemTypeOf!(BufA)).fn( setA, setB ); } } template unionOf( BufA, BufB, Pred ) { ElemTypeOf!(BufA)[] unionOf( BufA setA, BufB setB, Pred pred ) { return unionOf_!(ElemTypeOf!(BufA), Pred).fn( setA, setB, pred ); } } debug( UnitTest ) { unittest { assert( unionOf( "", "" ) == "" ); assert( unionOf( "abc", "def" ) == "abcdef" ); assert( unionOf( "abbbcd", "aadeefg" ) == "aabbbcdeefg" ); } } } //////////////////////////////////////////////////////////////////////////////// // Intersection Of //////////////////////////////////////////////////////////////////////////////// version( TangoDoc ) { /** * Computes the intersection of setA and setB as a set operation and * returns the retult in a new sorted array. Both setA and setB are * required to be sorted. If either setA or setB contain duplicates, the * result will contain the smaller number of duplicates from setA and setB. * All entries will be copied from setA. Comparisons will be performed * using the supplied predicate or '<' if none is supplied. * * Params: * setA = The first sorted array to evaluate. * setB = The second sorted array to evaluate. * pred = The evaluation predicate, which should return true if e1 is * less than e2 and false if not. This predicate may be any * callable type. * * Returns: * A new array containing the intersection of setA and setB. */ Elem[] intersectionOf( Elem[] setA, Elem[] setB, Pred2E pred = Pred2E.init ); } else { template intersectionOf_( Elem, Pred = IsLess!(Elem) ) { static assert( isCallableType!(Pred ) ); Elem[] fn( Elem[] setA, Elem[] setB, Pred pred = Pred.init ) { size_t posA = 0, posB = 0; Elem[] setI; while( posA < setA.length && posB < setB.length ) { if( pred( setA[posA], setB[posB] ) ) ++posA; else if( pred( setB[posB], setA[posA] ) ) ++posB; else setI ~= setA[posA++], posB++; } return setI; } } template intersectionOf( BufA, BufB ) { ElemTypeOf!(BufA)[] intersectionOf( BufA setA, BufB setB ) { return intersectionOf_!(ElemTypeOf!(BufA)).fn( setA, setB ); } } template intersectionOf( BufA, BufB, Pred ) { ElemTypeOf!(BufA)[] intersectionOf( BufA setA, BufB setB, Pred pred ) { return intersectionOf_!(ElemTypeOf!(BufA), Pred).fn( setA, setB, pred ); } } debug( UnitTest ) { unittest { assert( intersectionOf( "", "" ) == "" ); assert( intersectionOf( "abc", "def" ) == "" ); assert( intersectionOf( "abbbcd", "aabdddeefg" ) == "abd" ); } } } //////////////////////////////////////////////////////////////////////////////// // Missing From //////////////////////////////////////////////////////////////////////////////// version( TangoDoc ) { /** * Returns a new array containing all elements in setA which are not * present in setB. Both setA and setB are required to be sorted. * Comparisons will be performed using the supplied predicate or '<' * if none is supplied. * * Params: * setA = The first sorted array to evaluate. * setB = The second sorted array to evaluate. * pred = The evaluation predicate, which should return true if e1 is * less than e2 and false if not. This predicate may be any * callable type. * * Returns: * A new array containing the elements in setA that are not in setB. */ Elem[] missingFrom( Elem[] setA, Elem[] setB, Pred2E pred = Pred2E.init ); } else { template missingFrom_( Elem, Pred = IsLess!(Elem) ) { static assert( isCallableType!(Pred ) ); Elem[] fn( Elem[] setA, Elem[] setB, Pred pred = Pred.init ) { size_t posA = 0, posB = 0; Elem[] setM; while( posA < setA.length && posB < setB.length ) { if( pred( setA[posA], setB[posB] ) ) setM ~= setA[posA++]; else if( pred( setB[posB], setA[posA] ) ) ++posB; else ++posA, ++posB; } setM ~= setA[posA .. $]; return setM; } } template missingFrom( BufA, BufB ) { ElemTypeOf!(BufA)[] missingFrom( BufA setA, BufB setB ) { return missingFrom_!(ElemTypeOf!(BufA)).fn( setA, setB ); } } template missingFrom( BufA, BufB, Pred ) { ElemTypeOf!(BufA)[] missingFrom( BufA setA, BufB setB, Pred pred ) { return missingFrom_!(ElemTypeOf!(BufA), Pred).fn( setA, setB, pred ); } } debug( UnitTest ) { unittest { assert( missingFrom( "", "" ) == "" ); assert( missingFrom( "", "abc" ) == "" ); assert( missingFrom( "abc", "" ) == "abc" ); assert( missingFrom( "abc", "abc" ) == "" ); assert( missingFrom( "abc", "def" ) == "abc" ); assert( missingFrom( "abbbcd", "abd" ) == "bbc" ); assert( missingFrom( "abcdef", "bc" ) == "adef" ); } } } //////////////////////////////////////////////////////////////////////////////// // Difference Of //////////////////////////////////////////////////////////////////////////////// version( TangoDoc ) { /** * Returns a new array containing all elements in setA which are not * present in setB and the elements in setB which are not present in * setA. Both setA and setB are required to be sorted. Comparisons * will be performed using the supplied predicate or '<' if none is * supplied. * * Params: * setA = The first sorted array to evaluate. * setB = The second sorted array to evaluate. * pred = The evaluation predicate, which should return true if e1 is * less than e2 and false if not. This predicate may be any * callable type. * * Returns: * A new array containing the elements in setA that are not in setB * and the elements in setB that are not in setA. */ Elem[] differenceOf( Elem[] setA, Elem[] setB, Pred2E pred = Pred2E.init ); } else { template differenceOf_( Elem, Pred = IsLess!(Elem) ) { static assert( isCallableType!(Pred ) ); Elem[] fn( Elem[] setA, Elem[] setB, Pred pred = Pred.init ) { size_t posA = 0, posB = 0; Elem[] setD; while( posA < setA.length && posB < setB.length ) { if( pred( setA[posA], setB[posB] ) ) setD ~= setA[posA++]; else if( pred( setB[posB], setA[posA] ) ) setD ~= setB[posB++]; else ++posA, ++posB; } setD ~= setA[posA .. $]; setD ~= setB[posB .. $]; return setD; } } template differenceOf( BufA, BufB ) { ElemTypeOf!(BufA)[] differenceOf( BufA setA, BufB setB ) { return differenceOf_!(ElemTypeOf!(BufA)).fn( setA, setB ); } } template differenceOf( BufA, BufB, Pred ) { ElemTypeOf!(BufA)[] differenceOf( BufA setA, BufB setB, Pred pred ) { return differenceOf_!(ElemTypeOf!(BufA), Pred).fn( setA, setB, pred ); } } debug( UnitTest ) { unittest { assert( differenceOf( "", "" ) == "" ); assert( differenceOf( "", "abc" ) == "abc" ); assert( differenceOf( "abc", "" ) == "abc" ); assert( differenceOf( "abc", "abc" ) == "" ); assert( differenceOf( "abc", "def" ) == "abcdef" ); assert( differenceOf( "abbbcd", "abd" ) == "bbc" ); assert( differenceOf( "abd", "abbbcd" ) == "bbc" ); } } } //////////////////////////////////////////////////////////////////////////////// // Make Heap //////////////////////////////////////////////////////////////////////////////// version( TangoDoc ) { /** * Converts buf to a heap using the supplied predicate or '<' if none is * supplied. * * Params: * buf = The array to convert. This parameter is not marked 'ref' to * allow temporary slices to be sorted. As buf is not resized in * any way, omitting the 'ref' qualifier has no effect on the * result of this operation, even though it may be viewed as a * side-effect. * pred = The evaluation predicate, which should return true if e1 is * less than e2 and false if not. This predicate may be any * callable type. */ void makeHeap( Elem[] buf, Pred2E pred = Pred2E.init ); } else { template makeHeap_( Elem, Pred = IsLess!(Elem) ) { static assert( isCallableType!(Pred ) ); void fn( Elem[] buf, Pred pred = Pred.init ) { // NOTE: Indexes are passed instead of references because DMD does // not inline the reference-based version. void exch( size_t p1, size_t p2 ) { Elem t = buf[p1]; buf[p1] = buf[p2]; buf[p2] = t; } void fixDown( size_t pos, size_t end ) { if( end <= pos ) return; while( pos <= ( end - 1 ) / 2 ) { size_t nxt = 2 * pos + 1; if( nxt < end && pred( buf[nxt], buf[nxt + 1] ) ) ++nxt; if( !pred( buf[pos], buf[nxt] ) ) break; exch( pos, nxt ); pos = nxt; } } if( buf.length < 2 ) return; size_t end = buf.length - 1, pos = end / 2 + 2; do { fixDown( --pos, end ); } while( pos > 0 ); } } template makeHeap( Buf ) { void makeHeap( Buf buf ) { return makeHeap_!(ElemTypeOf!(Buf)).fn( buf ); } } template makeHeap( Buf, Pred ) { void makeHeap( Buf buf, Pred pred ) { return makeHeap_!(ElemTypeOf!(Buf), Pred).fn( buf, pred ); } } debug( UnitTest ) { unittest { void basic( char[] buf ) { if( buf.length < 2 ) return; size_t pos = 0, end = buf.length - 1; while( pos <= ( end - 1 ) / 2 ) { assert( buf[pos] >= buf[2 * pos + 1] ); if( 2 * pos + 1 < end ) { assert( buf[pos] >= buf[2 * pos + 2] ); } ++pos; } } void test( char[] buf ) { makeHeap( buf ); basic( buf ); } test( "mkcvalsidivjoaisjdvmzlksvdjioawmdsvmsdfefewv".dup ); test( "asdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdf".dup ); test( "the quick brown fox jumped over the lazy dog".dup ); test( "abcdefghijklmnopqrstuvwxyz".dup ); test( "zyxwvutsrqponmlkjihgfedcba".dup ); test( "ba".dup ); test( "a".dup ); test( "".dup ); } } } //////////////////////////////////////////////////////////////////////////////// // Push Heap //////////////////////////////////////////////////////////////////////////////// version( TangoDoc ) { /** * Adds val to buf by appending it and adjusting it up the heap. * * Params: * buf = The heap to modify. This parameter is marked 'ref' because * buf.length will be altered. * val = The element to push onto buf. * pred = The evaluation predicate, which should return true if e1 is * less than e2 and false if not. This predicate may be any * callable type. */ void pushHeap( ref Elem[] buf, Elem val, Pred2E pred = Pred2E.init ); } else { template pushHeap_( Elem, Pred = IsLess!(Elem) ) { static assert( isCallableType!(Pred ) ); void fn( ref Elem[] buf, Elem val, Pred pred = Pred.init ) { // NOTE: Indexes are passed instead of references because DMD does // not inline the reference-based version. void exch( size_t p1, size_t p2 ) { Elem t = buf[p1]; buf[p1] = buf[p2]; buf[p2] = t; } void fixUp( size_t pos ) { if( pos < 1 ) return; size_t par = ( pos - 1 ) / 2; while( pos > 0 && pred( buf[par], buf[pos] ) ) { exch( par, pos ); pos = par; par = ( pos - 1 ) / 2; } } buf ~= val; if( buf.length > 1 ) { fixUp( buf.length - 1 ); } } } template pushHeap( Buf, Val ) { void pushHeap( ref Buf buf, Val val ) { return pushHeap_!(ElemTypeOf!(Buf)).fn( buf, val ); } } template pushHeap( Buf, Val, Pred ) { void pushHeap( ref Buf buf, Val val, Pred pred ) { return pushHeap_!(ElemTypeOf!(Buf), Pred).fn( buf, val, pred ); } } debug( UnitTest ) { unittest { void basic( char[] buf ) { if( buf.length < 2 ) return; size_t pos = 0, end = buf.length - 1; while( pos <= ( end - 1 ) / 2 ) { assert( buf[pos] >= buf[2 * pos + 1] ); if( 2 * pos + 1 < end ) { assert( buf[pos] >= buf[2 * pos + 2] ); } ++pos; } } char[] buf; foreach( cur; "abcdefghijklmnopqrstuvwxyz" ) { pushHeap( buf, cur ); basic( buf ); } buf.length = 0; foreach( cur; "zyxwvutsrqponmlkjihgfedcba" ) { pushHeap( buf, cur ); basic( buf ); } } } } //////////////////////////////////////////////////////////////////////////////// // Pop Heap //////////////////////////////////////////////////////////////////////////////// version( TangoDoc ) { /** * Removes the top element from buf by swapping it with the bottom element, * adjusting it down the heap, and reducing the length of buf by one. * * Params: * buf = The heap to modify. This parameter is marked 'ref' because * buf.length will be altered. * pred = The evaluation predicate, which should return true if e1 is * less than e2 and false if not. This predicate may be any * callable type. */ void popHeap( ref Elem[] buf, Pred2E pred = Pred2E.init ); } else { template popHeap_( Elem, Pred = IsLess!(Elem) ) { static assert( isCallableType!(Pred ) ); void fn( ref Elem[] buf, Pred pred = Pred.init ) { // NOTE: Indexes are passed instead of references because DMD does // not inline the reference-based version. void exch( size_t p1, size_t p2 ) { Elem t = buf[p1]; buf[p1] = buf[p2]; buf[p2] = t; } void fixDown( size_t pos, size_t end ) { if( end <= pos ) return; while( pos <= ( end - 1 ) / 2 ) { size_t nxt = 2 * pos + 1; if( nxt < end && pred( buf[nxt], buf[nxt + 1] ) ) ++nxt; if( !pred( buf[pos], buf[nxt] ) ) break; exch( pos, nxt ); pos = nxt; } } if( buf.length > 1 ) { exch( 0, buf.length - 1 ); fixDown( 0, buf.length - 2 ); } if( buf.length > 0 ) { buf.length = buf.length - 1; } } } template popHeap( Buf ) { void popHeap( ref Buf buf ) { return popHeap_!(ElemTypeOf!(Buf)).fn( buf ); } } template popHeap( Buf, Pred ) { void popHeap( ref Buf buf, Pred pred ) { return popHeap_!(ElemTypeOf!(Buf), Pred).fn( buf, pred ); } } debug( UnitTest ) { unittest { void test( char[] buf ) { if( buf.length < 2 ) return; size_t pos = 0, end = buf.length - 1; while( pos <= ( end - 1 ) / 2 ) { assert( buf[pos] >= buf[2 * pos + 1] ); if( 2 * pos + 1 < end ) { assert( buf[pos] >= buf[2 * pos + 2] ); } ++pos; } } char[] buf = "zyxwvutsrqponmlkjihgfedcba".dup; while( buf.length > 0 ) { popHeap( buf ); test( buf ); } } } } //////////////////////////////////////////////////////////////////////////////// // Sort Heap //////////////////////////////////////////////////////////////////////////////// version( TangoDoc ) { /** * Sorts buf as a heap using the supplied predicate or '<' if none is * supplied. Calling makeHeap and sortHeap on an array in succession * has the effect of sorting the array using the heapsort algorithm. * * Params: * buf = The heap to sort. This parameter is not marked 'ref' to * allow temporary slices to be sorted. As buf is not resized * in any way, omitting the 'ref' qualifier has no effect on * the result of this operation, even though it may be viewed * as a side-effect. * pred = The evaluation predicate, which should return true if e1 is * less than e2 and false if not. This predicate may be any * callable type. */ void sortHeap( Elem[] buf, Pred2E pred = Pred2E.init ); } else { template sortHeap_( Elem, Pred = IsLess!(Elem) ) { static assert( isCallableType!(Pred ) ); void fn( Elem[] buf, Pred pred = Pred.init ) { // NOTE: Indexes are passed instead of references because DMD does // not inline the reference-based version. void exch( size_t p1, size_t p2 ) { Elem t = buf[p1]; buf[p1] = buf[p2]; buf[p2] = t; } void fixDown( size_t pos, size_t end ) { if( end <= pos ) return; while( pos <= ( end - 1 ) / 2 ) { size_t nxt = 2 * pos + 1; if( nxt < end && pred( buf[nxt], buf[nxt + 1] ) ) ++nxt; if( !pred( buf[pos], buf[nxt] ) ) break; exch( pos, nxt ); pos = nxt; } } if( buf.length < 2 ) return; size_t pos = buf.length - 1; while( pos > 0 ) { exch( 0, pos ); fixDown( 0, --pos ); } } } template sortHeap( Buf ) { void sortHeap( Buf buf ) { return sortHeap_!(ElemTypeOf!(Buf)).fn( buf ); } } template sortHeap( Buf, Pred ) { void sortHeap( Buf buf, Pred pred ) { return sortHeap_!(ElemTypeOf!(Buf), Pred).fn( buf, pred ); } } debug( UnitTest ) { unittest { char[] buf = "zyxwvutsrqponmlkjihgfedcba".dup; sortHeap( buf ); char sav = buf[0]; foreach( cur; buf ) { assert( cur >= sav ); sav = cur; } } } } //////////////////////////////////////////////////////////////////////////////// // Map //////////////////////////////////////////////////////////////////////////////// version (TangoDoc) { /** Apply a function to each element an array. The function's * return values are stored in another array. * * Params: * array = the array. * func = the function to apply. * buf = a buffer in which to store the results. This will be resized if it does not have sufficient space. * * Returns: * an array (the same as the buffer passed in, if possible) where the * ith element is the result of applying func to the ith element of the * input array */ Elem2[] map(Elem[] array, Map2E func, Elem2[] buf = null); } else { template map(Func, Array) { ReturnTypeOf!(Func)[] map(Array array, Func func, ReturnTypeOf!(Func)[] buf = null) { if (buf.length < array.length) { buf.length = array.length; } foreach (i, a; array) buf[i] = func(a); return buf; } } debug (UnitTest) { unittest { auto arr = map([1, 17, 8, 12], (int i) { return i * 2L; }); assert(arr == [2L, 34L, 16L, 24L]); } } } //////////////////////////////////////////////////////////////////////////////// // Reduce //////////////////////////////////////////////////////////////////////////////// version (TangoDoc) { /** Reduce an array of elements to a single element, using a user-supplied * reductor function. * * If the array is empty, return the default value for the element type. * * If the array contains only one element, return that element. * * Otherwise, the reductor function will be called on every member of the * array and on every resulting element until there is only one element, * which is then returned. * * Params: * array = the array to reduce * func = the reductor function * * Returns: the single element reduction */ Elem reduce(Elem[] array, Reduce2E func); } else { template reduce(Array, Func) { static assert(isCallableType!(Func)); ReturnTypeOf!(Func) reduce(Array array, Func func) { if (array.length == 0) return ReturnTypeOf!(Func).init; auto e = array[0]; foreach (i, a; array) { if (i == 0) continue; e = func(e, a); } return e; } } debug (UnitTest) { unittest { auto result = reduce([1, 17, 8, 12], (int i, int j) { return i * j; }); assert(result == 1632); } } } //////////////////////////////////////////////////////////////////////////////// // Filter //////////////////////////////////////////////////////////////////////////////// version( TangoDoc ) { /** * Performs a linear scan of buf from [0 .. buf.length$(RP), creating a new * array with just the elements that satisfy pred. The relative order of * elements will be preserved. * * Params: * array = The array to scan. * pred = The evaluation predicate, which should return true if the * element satisfies the condition and false if not. This * predicate may be any callable type. * buf = an optional buffer into which elements are filtered. This * is the array that gets returned to you. * * Returns: * A new array with just the elements from buf that satisfy pred. * * Notes: * While most Array functions that take an output buffer size that buffer * optimally, in this case, there is no way of knowing whether the output * will be empty or the entire input array. If you have special knowledge * in this regard, preallocating the output buffer will be advantageous. */ Elem[] filter(Elem[] array, Pred1E pred, Elem[] buf = null); } else { template filter(Array, Pred) { static assert(isCallableType!(Pred)); ParameterTupleOf!(Pred)[0][] filter(Array array, Pred pred, ParameterTupleOf!(Pred)[0][] buf = null) { // Unfortunately, we don't know our output size -- it could be empty or // the length of the input array. So we won't try to do anything fancy // with preallocation. buf.length = 0; foreach (i, e; array) { if (pred(e)) { buf ~= e; } } return buf; } } debug( UnitTest ) { unittest { void test( char[] buf, bool delegate( char ) dg, size_t num ) { char[] r = filter( buf, dg ); assert( r.length == num ); size_t rpos = 0; foreach( pos, cur; buf ) { if ( dg( cur ) ) { assert( r[rpos] == cur ); rpos++; } } assert( rpos == num ); } test( "abcdefghij".dup, ( char c ) { return c == 'x'; }, 0 ); test( "xabcdefghi".dup, ( char c ) { return c == 'x'; }, 1 ); test( "abcdefghix".dup, ( char c ) { return c == 'x'; }, 1 ); test( "abxxcdefgh".dup, ( char c ) { return c == 'x'; }, 2 ); test( "xaxbcdxxex".dup, ( char c ) { return c == 'x'; }, 5 ); } } } |