| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354 | /** * This module contains a collection of bit-level operations. * * Copyright: Public Domain * License: Public Domain * Author: Sean Kelly */ module tango.core.BitManip; public import core.bitop; /+ version( TangoDoc ) { /** * Scans the bits in v starting with bit 0, looking * for the first set bit. * Returns: * The bit number of the first bit set. * The return value is undefined if v is zero. */ int bsf( uint v ); /** * Scans the bits in v from the most significant bit * to the least significant bit, looking * for the first set bit. * Returns: * The bit number of the first bit set. * The return value is undefined if v is zero. * Example: * --- * import tango.core.BitManip; * * int main() * { * uint v; * int x; * * v = 0x21; * x = bsf(v); * printf("bsf(x%x) = %d\n", v, x); * x = bsr(v); * printf("bsr(x%x) = %d\n", v, x); * return 0; * } * --- * Output: * bsf(x21) = 0$(BR) * bsr(x21) = 5 */ int bsr( size_t v ); /** * Tests the bit. */ int bt( size_t* p, size_t bitnum ); /** * Tests and complements the bit. */ int btc( size_t* p, size_t bitnum ); /** * Tests and resets (sets to 0) the bit. */ int btr( size_t* p, size_t bitnum ); /** * Tests and sets the bit. * Params: * p = a non-NULL pointer to an array of size_ts. * index = a bit number, starting with bit 0 of p[0], * and progressing. It addresses bits like the expression: --- p[index / (size_t.sizeof*8)] & (1 << (index & ((size_t.sizeof*8) - 1))) --- * Returns: * A non-zero value if the bit was set, and a zero * if it was clear. * * Example: * --- import tango.core.BitManip; int main() { size_t array[2]; array[0] = 2; array[1] = 0x100; printf("btc(array, 35) = %d\n", btc(array, 35)); printf("array = [0]:x%x, [1]:x%x\n", array[0], array[1]); printf("btc(array, 35) = %d\n", btc(array, 35)); printf("array = [0]:x%x, [1]:x%x\n", array[0], array[1]); printf("bts(array, 35) = %d\n", bts(array, 35)); printf("array = [0]:x%x, [1]:x%x\n", array[0], array[1]); printf("btr(array, 35) = %d\n", btr(array, 35)); printf("array = [0]:x%x, [1]:x%x\n", array[0], array[1]); printf("bt(array, 1) = %d\n", bt(array, 1)); printf("array = [0]:x%x, [1]:x%x\n", array[0], array[1]); return 0; } * --- * Output: *<pre> *btc(array, 35) = 0 *array = [0]:x2, [1]:x108 *btc(array, 35) = -1 *array = [0]:x2, [1]:x100 *bts(array, 35) = 0 *array = [0]:x2, [1]:x108 *btr(array, 35) = -1 *array = [0]:x2, [1]:x100 *bt(array, 1) = -1 *array = [0]:x2, [1]:x100 *</pre> */ int bts( size_t* p, size_t bitnum ); /** * Swaps bytes in a 4 byte uint end-to-end, i.e. byte 0 becomes * byte 3, byte 1 becomes byte 2, byte 2 becomes byte 1, byte 3 * becomes byte 0. */ uint bswap( uint v ); /** * Reads I/O port at port_address. */ ubyte inp( uint port_address ); /** * ditto */ ushort inpw( uint port_address ); /** * ditto */ uint inpl( uint port_address ); /** * Writes and returns value to I/O port at port_address. */ ubyte outp( uint port_address, ubyte value ); /** * ditto */ ushort outpw( uint port_address, ushort value ); /** * ditto */ uint outpl( uint port_address, uint value ); } else version( LDC ) { //public import ldc.bitmanip; public import core.bitop; } else { //public import std.intrinsic; public import core.bitop; } /** * Calculates the number of set bits in a 32-bit integer. */ int popcnt( uint x ) { // Avoid branches, and the potential for cache misses which // could be incurred with a table lookup. // We need to mask alternate bits to prevent the // sum from overflowing. // add neighbouring bits. Each bit is 0 or 1. x = x - ((x>>1) & 0x5555_5555); // now each two bits of x is a number 00,01 or 10. // now add neighbouring pairs x = ((x&0xCCCC_CCCC)>>2) + (x&0x3333_3333); // now each nibble holds 0000-0100. Adding them won't // overflow any more, so we don't need to mask any more // Now add the nibbles, then the bytes, then the words // We still need to mask to prevent double-counting. // Note that if we used a rotate instead of a shift, we // wouldn't need the masks, and could just divide the sum // by 8 to account for the double-counting. // On some CPUs, it may be faster to perform a multiply. x += (x>>4); x &= 0x0F0F_0F0F; x += (x>>8); x &= 0x00FF_00FF; x += (x>>16); x &= 0xFFFF; return x; } debug( UnitTest ) { unittest { assert( popcnt( 0 ) == 0 ); assert( popcnt( 7 ) == 3 ); assert( popcnt( 0xAA )== 4 ); assert( popcnt( 0x8421_1248 ) == 8 ); assert( popcnt( 0xFFFF_FFFF ) == 32 ); assert( popcnt( 0xCCCC_CCCC ) == 16 ); assert( popcnt( 0x7777_7777 ) == 24 ); } } /** * Reverses the order of bits in a 32-bit integer. */ uint bitswap( uint x ) { version( D_InlineAsm_X86 ) { asm { // Author: Tiago Gasiba. mov EDX, EAX; shr EAX, 1; and EDX, 0x5555_5555; and EAX, 0x5555_5555; shl EDX, 1; or EAX, EDX; mov EDX, EAX; shr EAX, 2; and EDX, 0x3333_3333; and EAX, 0x3333_3333; shl EDX, 2; or EAX, EDX; mov EDX, EAX; shr EAX, 4; and EDX, 0x0f0f_0f0f; and EAX, 0x0f0f_0f0f; shl EDX, 4; or EAX, EDX; bswap EAX; } } else { // swap odd and even bits x = ((x >> 1) & 0x5555_5555) | ((x & 0x5555_5555) << 1); // swap consecutive pairs x = ((x >> 2) & 0x3333_3333) | ((x & 0x3333_3333) << 2); // swap nibbles x = ((x >> 4) & 0x0F0F_0F0F) | ((x & 0x0F0F_0F0F) << 4); // swap bytes x = ((x >> 8) & 0x00FF_00FF) | ((x & 0x00FF_00FF) << 8); // swap 2-byte long pairs x = ( x >> 16 ) | ( x << 16); return x; } } /** * Reverses the order of bits in a 64-bit integer. */ ulong bitswap ( ulong x ) { version( D_InlineAsm_X86_64 ) { asm { // Author: Tiago Gasiba. mov RAX, x; mov RDX, RAX; shr RAX, 1; mov RCX, 0x5555_5555_5555_5555L; and RDX, RCX; and RAX, RCX; shl RDX, 1; or RAX, RDX; mov RDX, RAX; shr RAX, 2; mov RCX, 0x3333_3333_3333_3333L; and RDX, RCX; and RAX, RCX; shl RDX, 2; or RAX, RDX; mov RDX, RAX; shr RAX, 4; mov RCX, 0x0f0f_0f0f_0f0f_0f0fL; and RDX, RCX; and RAX, RCX; shl RDX, 4; or RAX, RDX; bswap RAX; } } else { // swap odd and even bits x = ((x >> 1) & 0x5555_5555_5555_5555L) | ((x & 0x5555_5555_5555_5555L) << 1); // swap consecutive pairs x = ((x >> 2) & 0x3333_3333_3333_3333L) | ((x & 0x3333_3333_3333_3333L) << 2); // swap nibbles x = ((x >> 4) & 0x0f0f_0f0f_0f0f_0f0fL) | ((x & 0x0f0f_0f0f_0f0f_0f0fL) << 4); // swap bytes x = ((x >> 8) & 0x00FF_00FF_00FF_00FFL) | ((x & 0x00FF_00FF_00FF_00FFL) << 8); // swap shorts x = ((x >> 16) & 0x0000_FFFF_0000_FFFFL) | ((x & 0x0000_FFFF_0000_FFFFL) << 16); // swap ints x = ( x >> 32 ) | ( x << 32); return x; } } debug( UnitTest ) { unittest { assert( bitswap( 0x8000_0100 ) == 0x0080_0001 ); assert( bitswap( 0x8000_0100_0080_0001 ) == 0x1000_0800_0010_0008 ); } } +/ |