12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937 |
|
/**
* Low-level Mathematical Functions which take advantage of the IEEE754 ABI.
*
* Copyright: Portions Copyright (C) 2001-2005 Digital Mars.
* License: BSD style: $(LICENSE), Digital Mars.
* Authors: Don Clugston, Walter Bright, Sean Kelly
*/
/* Portions of this code were taken from Phobos std.math, which has the following
* copyright notice:
*
* Author:
* Walter Bright
* Copyright:
* Copyright (c) 2001-2005 by Digital Mars,
* All Rights Reserved,
* www.digitalmars.com
* License:
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
*
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
*
* <ul>
* <li> The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* </li>
* <li> Altered source versions must be plainly marked as such, and must not
* be misrepresented as being the original software.
* </li>
* <li> This notice may not be removed or altered from any source
* distribution.
* </li>
* </ul>
*/
/**
* Macros:
*
* TABLE_SV = <table border=1 cellpadding=4 cellspacing=0>
* <caption>Special Values</caption>
* $0</table>
* SVH = $(TR $(TH $1) $(TH $2))
* SV = $(TR $(TD $1) $(TD $2))
* SVH3 = $(TR $(TH $1) $(TH $2) $(TH $3))
* SV3 = $(TR $(TD $1) $(TD $2) $(TD $3))
* NAN = $(RED NAN)
* PLUSMN = ±
* INFIN = ∞
* PLUSMNINF = ±∞
* PI = π
* LT = <
* GT = >
* SQRT = &radix;
* HALF = ½
*/
module tango.math.IEEE;
version(GNU){
// GDC is a filthy liar. It can't actually do inline asm.
} else version(TangoNoAsm) {
} else version(D_InlineAsm_X86) {
version = Naked_D_InlineAsm_X86;
}
version (X86){
version = X86_Any;
}
version (X86_64){
version = X86_Any;
}
version (Naked_D_InlineAsm_X86) {
// Don't include this extra dependency unless we need to.
debug(UnitTest) {
static import tango.stdc.math;
}
} else {
// Needed for cos(), sin(), tan() on GNU.
static import tango.stdc.math;
}
version(Windows) {
version(DigitalMars) {
version = DMDWindows;
}
}
// Standard Tango NaN payloads.
// NOTE: These values may change in future Tango releases
// The lowest three bits indicate the cause of the NaN:
// 0 = error other than those listed below:
// 1 = domain error
// 2 = singularity
// 3 = range
// 4-7 = reserved.
enum TANGO_NAN {
// General errors
DOMAIN_ERROR = 0x0101,
SINGULARITY = 0x0102,
RANGE_ERROR = 0x0103,
// NaNs created by functions in the basic library
TAN_DOMAIN = 0x1001,
POW_DOMAIN = 0x1021,
GAMMA_DOMAIN = 0x1101,
GAMMA_POLE = 0x1102,
SGNGAMMA = 0x1112,
BETA_DOMAIN = 0x1131,
// NaNs from statistical functions
NORMALDISTRIBUTION_INV_DOMAIN = 0x2001,
STUDENTSDDISTRIBUTION_DOMAIN = 0x2011
}
private:
/* Most of the functions depend on the format of the largest IEEE floating-point type.
* These code will differ depending on whether 'real' is 64, 80, or 128 bits,
* and whether it is a big-endian or little-endian architecture.
* Only five 'real' ABIs are currently supported:
* 64 bit Big-endian 'double' (eg PowerPC)
* 128 bit Big-endian 'quadruple' (eg SPARC)
* 64 bit Little-endian 'double' (eg x86-SSE2)
* 80 bit Little-endian, with implied bit 'real80' (eg x87, Itanium).
* 128 bit Little-endian 'quadruple' (not implemented on any known processor!)
*
* There is also an unsupported ABI which does not follow IEEE; several of its functions
* will generate run-time errors if used.
* 128 bit Big-endian 'doubledouble' (used by GDC <= 0.23 for PowerPC)
*/
version(LittleEndian) {
static assert(real.mant_dig == 53 || real.mant_dig==64 || real.mant_dig == 113,
"Only 64-bit, 80-bit, and 128-bit reals are supported for LittleEndian CPUs");
} else {
static assert(real.mant_dig == 53 || real.mant_dig==106 || real.mant_dig == 113,
"Only 64-bit and 128-bit reals are supported for BigEndian CPUs. double-double reals have partial support");
}
// Constants used for extracting the components of the representation.
// They supplement the built-in floating point properties.
template floatTraits(T) {
// EXPMASK is a ushort mask to select the exponent portion (without sign)
// SIGNMASK is a ushort mask to select the sign bit.
// EXPPOS_SHORT is the index of the exponent when represented as a ushort array.
// SIGNPOS_BYTE is the index of the sign when represented as a ubyte array.
// RECIP_EPSILON is the value such that (smallest_denormal) * RECIP_EPSILON == T.min
enum T RECIP_EPSILON = (1/T.epsilon);
static if (T.mant_dig == 24) { // float
enum : ushort {
EXPMASK = 0x7F80,
SIGNMASK = 0x8000,
EXPBIAS = 0x3F00
}
enum uint EXPMASK_INT = 0x7F80_0000;
enum uint MANTISSAMASK_INT = 0x007F_FFFF;
version(LittleEndian) {
enum EXPPOS_SHORT = 1;
} else {
enum EXPPOS_SHORT = 0;
}
} else static if (T.mant_dig==53) { // double, or real==double
enum : ushort {
EXPMASK = 0x7FF0,
SIGNMASK = 0x8000,
EXPBIAS = 0x3FE0
}
enum uint EXPMASK_INT = 0x7FF0_0000;
enum uint MANTISSAMASK_INT = 0x000F_FFFF; // for the MSB only
version(LittleEndian) {
enum EXPPOS_SHORT = 3;
enum SIGNPOS_BYTE = 7;
} else {
enum EXPPOS_SHORT = 0;
enum SIGNPOS_BYTE = 0;
}
} else static if (T.mant_dig==64) { // real80
enum : ushort {
EXPMASK = 0x7FFF,
SIGNMASK = 0x8000,
EXPBIAS = 0x3FFE
}
// enum ulong QUIETNANMASK = 0xC000_0000_0000_0000; // Converts a signaling NaN to a quiet NaN.
version(LittleEndian) {
enum EXPPOS_SHORT = 4;
enum SIGNPOS_BYTE = 9;
} else {
enum EXPPOS_SHORT = 0;
enum SIGNPOS_BYTE = 0;
}
} else static if (real.mant_dig==113){ // quadruple
enum : ushort {
EXPMASK = 0x7FFF,
SIGNMASK = 0x8000,
EXPBIAS = 0x3FFE
}
version(LittleEndian) {
enum EXPPOS_SHORT = 7;
enum SIGNPOS_BYTE = 15;
} else {
enum EXPPOS_SHORT = 0;
enum SIGNPOS_BYTE = 0;
}
} else static if (real.mant_dig==106) { // doubledouble
enum : ushort {
EXPMASK = 0x7FF0,
SIGNMASK = 0x8000
// EXPBIAS = 0x3FE0
}
// the exponent byte is not unique
version(LittleEndian) {
enum EXPPOS_SHORT = 7; // 3 is also an exp short
enum SIGNPOS_BYTE = 15;
} else {
enum EXPPOS_SHORT = 0; // 4 is also an exp short
enum SIGNPOS_BYTE = 0;
}
}
}
// These apply to all floating-point types
version(LittleEndian) {
enum MANTISSA_LSB = 0;
enum MANTISSA_MSB = 1;
} else {
enum MANTISSA_LSB = 1;
enum MANTISSA_MSB = 0;
}
public:
/** IEEE exception status flags
These flags indicate that an exceptional floating-point condition has occured.
They indicate that a NaN or an infinity has been generated, that a result
is inexact, or that a signalling NaN has been encountered.
The return values of the properties should be treated as booleans, although
each is returned as an int, for speed.
Example:
----
real a=3.5;
// Set all the flags to zero
resetIeeeFlags();
assert(!ieeeFlags.divByZero);
// Perform a division by zero.
a/=0.0L;
assert(a==real.infinity);
assert(ieeeFlags.divByZero);
// Create a NaN
a*=0.0L;
assert(ieeeFlags.invalid);
assert(isNaN(a));
// Check that calling func() has no effect on the
// status flags.
IeeeFlags f = ieeeFlags;
func();
assert(ieeeFlags == f);
----
*/
struct IeeeFlags
{
private:
// The x87 FPU status register is 16 bits.
// The Pentium SSE2 status register is 32 bits.
int m_flags;
version (X86_Any) {
// Applies to both x87 status word (16 bits) and SSE2 status word(32 bits).
enum : int {
INEXACT_MASK = 0x20,
UNDERFLOW_MASK = 0x10,
OVERFLOW_MASK = 0x08,
DIVBYZERO_MASK = 0x04,
INVALID_MASK = 0x01
}
// Don't bother about denormals, they are not supported on most CPUs.
// DENORMAL_MASK = 0x02;
} else version (PPC) {
// PowerPC FPSCR is a 32-bit register.
enum : int {
INEXACT_MASK = 0x600,
UNDERFLOW_MASK = 0x010,
OVERFLOW_MASK = 0x008,
DIVBYZERO_MASK = 0x020,
INVALID_MASK = 0xF80
}
} else { // SPARC FSR is a 32bit register
//(64 bits for Sparc 7 & 8, but high 32 bits are uninteresting).
enum : int {
INEXACT_MASK = 0x020,
UNDERFLOW_MASK = 0x080,
OVERFLOW_MASK = 0x100,
DIVBYZERO_MASK = 0x040,
INVALID_MASK = 0x200
}
}
private:
@property static IeeeFlags getIeeeFlags()
{
// This is a highly time-critical operation, and
// should really be an intrinsic.
version(D_InlineAsm_X86) {
version(DMDWindows) {
// In this case, we
// take advantage of the fact that for DMD-Windows
// a struct containing only a int is returned in EAX.
asm {
fstsw AX;
// NOTE: If compiler supports SSE2, need to OR the result with
// the SSE2 status register.
// Clear all irrelevant bits
and EAX, 0x03D;
}
}
else {
IeeeFlags tmp1;
asm {
fstsw AX;
// NOTE: If compiler supports SSE2, need to OR the result with
// the SSE2 status register.
// Clear all irrelevant bits
and EAX, 0x03D;
mov tmp1, EAX;
}
return tmp1;
}
} else version (PPC) {
assert(0, "Not yet supported");
} else {
/* SPARC:
int retval;
asm { st %fsr, retval; }
return retval;
*/
assert(0, "Not yet supported");
}
}
@property static void resetIeeeFlags()
{
version(D_InlineAsm_X86) {
asm {
fnclex;
}
} else {
/* SPARC:
int tmpval;
asm { st %fsr, tmpval; }
tmpval &=0xFFFF_FC00;
asm { ld tmpval, %fsr; }
*/
assert(0, "Not yet supported");
}
}
public:
/// The result cannot be represented exactly, so rounding occured.
/// (example: x = sin(0.1); }
@property int inexact() { return m_flags & INEXACT_MASK; }
/// A zero was generated by underflow (example: x = real.min*real.epsilon/2;)
@property int underflow() { return m_flags & UNDERFLOW_MASK; }
/// An infinity was generated by overflow (example: x = real.max*2;)
@property int overflow() { return m_flags & OVERFLOW_MASK; }
/// An infinity was generated by division by zero (example: x = 3/0.0; )
@property int divByZero() { return m_flags & DIVBYZERO_MASK; }
/// A machine NaN was generated. (example: x = real.infinity * 0.0; )
@property int invalid() { return m_flags & INVALID_MASK; }
}
/// Return a snapshot of the current state of the floating-point status flags.
@property IeeeFlags ieeeFlags() { return IeeeFlags.getIeeeFlags(); }
/// Set all of the floating-point status flags to false.
void resetIeeeFlags() { IeeeFlags.resetIeeeFlags(); }
/** IEEE rounding modes.
* The default mode is ROUNDTONEAREST.
*/
enum RoundingMode : short {
ROUNDTONEAREST = 0x0000,
ROUNDDOWN = 0x0400,
ROUNDUP = 0x0800,
ROUNDTOZERO = 0x0C00
};
/** Change the rounding mode used for all floating-point operations.
*
* Returns the old rounding mode.
*
* When changing the rounding mode, it is almost always necessary to restore it
* at the end of the function. Typical usage:
---
auto oldrounding = setIeeeRounding(RoundingMode.ROUNDDOWN);
scope (exit) setIeeeRounding(oldrounding);
---
*/
RoundingMode setIeeeRounding(RoundingMode roundingmode) {
version(D_InlineAsm_X86) {
// TODO: For SSE/SSE2, do we also need to set the SSE rounding mode?
short cont;
asm {
fstcw cont;
mov CX, cont;
mov AX, cont;
and EAX, 0x0C00; // Form the return value
and CX, 0xF3FF;
or CX, roundingmode;
mov cont, CX;
fldcw cont;
}
} else {
assert(0, "Not yet supported");
}
}
/** Get the IEEE rounding mode which is in use.
*
*/
RoundingMode getIeeeRounding() {
version(D_InlineAsm_X86) {
// TODO: For SSE/SSE2, do we also need to check the SSE rounding mode?
short cont;
asm {
mov EAX, 0x0C00;
fstcw cont;
and AX, cont;
}
} else {
assert(0, "Not yet supported");
}
}
debug(UnitTest) {
version(D_InlineAsm_X86) { // Won't work for anything else yet
unittest {
real a = 3.5;
resetIeeeFlags();
assert(!ieeeFlags.divByZero);
a /= 0.0L;
assert(ieeeFlags.divByZero);
assert(a == real.infinity);
a *= 0.0L;
assert(ieeeFlags.invalid);
assert(isNaN(a));
a = real.max;
a *= 2;
assert(ieeeFlags.overflow);
a = real.min * real.epsilon;
a /= 99;
assert(ieeeFlags.underflow);
assert(ieeeFlags.inexact);
int r = getIeeeRounding();
assert(r == RoundingMode.ROUNDTONEAREST);
}
}
}
// Note: Itanium supports more precision options than this. SSE/SSE2 does not support any.
enum PrecisionControl : short {
PRECISION80 = 0x300,
PRECISION64 = 0x200,
PRECISION32 = 0x000
};
/** Set the number of bits of precision used by 'real'.
*
* Returns: the old precision.
* This is not supported on all platforms.
*/
PrecisionControl reduceRealPrecision(PrecisionControl prec) {
version(D_InlineAsm_X86) {
short cont;
asm {
fstcw cont;
mov CX, cont;
mov AX, cont;
and EAX, 0x0300; // Form the return value
and CX, 0xFCFF;
or CX, prec;
mov cont, CX;
fldcw cont;
}
} else {
assert(0, "Not yet supported");
}
}
/*********************************************************************
* Separate floating point value into significand and exponent.
*
* Returns:
* Calculate and return $(I x) and $(I exp) such that
* value =$(I x)*2$(SUP exp) and
* .5 $(LT)= |$(I x)| $(LT) 1.0
*
* $(I x) has same sign as value.
*
* $(TABLE_SV
* $(TR $(TH value) $(TH returns) $(TH exp))
* $(TR $(TD $(PLUSMN)0.0) $(TD $(PLUSMN)0.0) $(TD 0))
* $(TR $(TD +$(INFIN)) $(TD +$(INFIN)) $(TD int.max))
* $(TR $(TD -$(INFIN)) $(TD -$(INFIN)) $(TD int.min))
* $(TR $(TD $(PLUSMN)$(NAN)) $(TD $(PLUSMN)$(NAN)) $(TD int.min))
* )
*/
real frexp(real value, out int exp)
{
ushort* vu = cast(ushort*)&value;
long* vl = cast(long*)&value;
uint ex;
alias floatTraits!(real) F;
ex = vu[F.EXPPOS_SHORT] & F.EXPMASK;
static if (real.mant_dig == 64) { // real80
if (ex) { // If exponent is non-zero
if (ex == F.EXPMASK) { // infinity or NaN
if (*vl & 0x7FFF_FFFF_FFFF_FFFF) { // NaN
*vl |= 0xC000_0000_0000_0000; // convert $(NAN)S to $(NAN)Q
exp = int.min;
} else if (vu[F.EXPPOS_SHORT] & 0x8000) { // negative infinity
exp = int.min;
} else { // positive infinity
exp = int.max;
}
} else {
exp = ex - F.EXPBIAS;
vu[F.EXPPOS_SHORT] = cast(ushort)((0x8000 & vu[F.EXPPOS_SHORT]) | 0x3FFE);
}
} else if (!*vl) {
// value is +-0.0
exp = 0;
} else {
// denormal
value *= F.RECIP_EPSILON;
ex = vu[F.EXPPOS_SHORT] & F.EXPMASK;
exp = ex - F.EXPBIAS - 63;
vu[F.EXPPOS_SHORT] = cast(ushort)((0x8000 & vu[F.EXPPOS_SHORT]) | 0x3FFE);
}
return value;
} else static if (real.mant_dig == 113) { // quadruple
if (ex) { // If exponent is non-zero
if (ex == F.EXPMASK) { // infinity or NaN
if (vl[MANTISSA_LSB] |( vl[MANTISSA_MSB]&0x0000_FFFF_FFFF_FFFF)) { // NaN
vl[MANTISSA_MSB] |= 0x0000_8000_0000_0000; // convert $(NAN)S to $(NAN)Q
exp = int.min;
} else if (vu[F.EXPPOS_SHORT] & 0x8000) { // negative infinity
exp = int.min;
} else { // positive infinity
exp = int.max;
}
} else {
exp = ex - F.EXPBIAS;
vu[F.EXPPOS_SHORT] = cast(ushort)((0x8000 & vu[F.EXPPOS_SHORT]) | 0x3FFE);
}
} else if ((vl[MANTISSA_LSB] |(vl[MANTISSA_MSB]&0x0000_FFFF_FFFF_FFFF))==0) {
// value is +-0.0
exp = 0;
} else {
// denormal
value *= F.RECIP_EPSILON;
ex = vu[F.EXPPOS_SHORT] & F.EXPMASK;
exp = ex - F.EXPBIAS - 113;
vu[F.EXPPOS_SHORT] = cast(ushort)((0x8000 & vu[F.EXPPOS_SHORT]) | 0x3FFE);
}
return value;
} else static if (real.mant_dig==53) { // real is double
if (ex) { // If exponent is non-zero
if (ex == F.EXPMASK) { // infinity or NaN
if (*vl==0x7FF0_0000_0000_0000) { // positive infinity
exp = int.max;
} else if (*vl==0xFFF0_0000_0000_0000) { // negative infinity
exp = int.min;
} else { // NaN
*vl |= 0x0008_0000_0000_0000; // convert $(NAN)S to $(NAN)Q
exp = int.min;
}
} else {
exp = (ex - F.EXPBIAS) >>> 4;
vu[F.EXPPOS_SHORT] = (0x8000 & vu[F.EXPPOS_SHORT]) | 0x3FE0;
}
} else if (!(*vl & 0x7FFF_FFFF_FFFF_FFFF)) {
// value is +-0.0
exp = 0;
} else {
// denormal
ushort sgn;
sgn = (0x8000 & vu[F.EXPPOS_SHORT])| 0x3FE0;
*vl &= 0x7FFF_FFFF_FFFF_FFFF;
int i = -0x3FD+11;
do {
i--;
*vl <<= 1;
} while (*vl > 0);
exp = i;
vu[F.EXPPOS_SHORT] = sgn;
}
return value;
}else { //static if(real.mant_dig==106) // doubledouble
assert(0, "Unsupported");
}
}
debug(UnitTest) {
unittest
{
static real vals[][3] = // x,frexp,exp
[
[0.0, 0.0, 0],
[-0.0, -0.0, 0],
[1.0, .5, 1],
[-1.0, -.5, 1],
[2.0, .5, 2],
[double.min/2.0, .5, -1022],
[real.infinity,real.infinity,int.max],
[-real.infinity,-real.infinity,int.min],
];
int i;
int eptr;
real v = frexp(NaN(0xABC), eptr);
assert(isIdentical(NaN(0xABC), v));
assert(eptr ==int.min);
v = frexp(-NaN(0xABC), eptr);
assert(isIdentical(-NaN(0xABC), v));
assert(eptr ==int.min);
for (i = 0; i < vals.length; i++) {
real x = vals[i][0];
real e = vals[i][1];
int exp = cast(int)vals[i][2];
v = frexp(x, eptr);
// printf("frexp(%La) = %La, should be %La, eptr = %d, should be %d\n", x, v, e, eptr, exp);
assert(isIdentical(e, v));
assert(exp == eptr);
}
static if (real.mant_dig == 64) {
static real extendedvals[][3] = [ // x,frexp,exp
[0x1.a5f1c2eb3fe4efp+73L, 0x1.A5F1C2EB3FE4EFp-1L, 74], // normal
[0x1.fa01712e8f0471ap-1064L, 0x1.fa01712e8f0471ap-1L, -1063],
[real.min, .5, -16381],
[real.min/2.0L, .5, -16382] // denormal
];
for (i = 0; i < extendedvals.length; i++) {
real x = extendedvals[i][0];
real e = extendedvals[i][1];
int exp = cast(int)extendedvals[i][2];
v = frexp(x, eptr);
assert(isIdentical(e, v));
assert(exp == eptr);
}
}
}
}
/**
* Compute n * 2$(SUP exp)
* References: frexp
*/
real ldexp(real n, int exp) /* intrinsic */
{
version(Naked_D_InlineAsm_X86)
{
asm {
fild exp;
fld n;
fscale;
fstp ST(1);//, ST(0);
}
}
else
{
return tango.stdc.math.ldexpl(n, exp);
}
}
/******************************************
* Extracts the exponent of x as a signed integral value.
*
* If x is not a special value, the result is the same as
* $(D cast(int)logb(x)).
*
* Remarks: This function is consistent with IEEE754R, but it
* differs from the C function of the same name
* in the return value of infinity. (in C, ilogb(real.infinity)== int.max).
* Note that the special return values may all be equal.
*
* $(TABLE_SV
* $(TR $(TH x) $(TH ilogb(x)) $(TH Invalid?))
* $(TR $(TD 0) $(TD FP_ILOGB0) $(TD yes))
* $(TR $(TD $(PLUSMN)$(INFIN)) $(TD FP_ILOGBINFINITY) $(TD yes))
* $(TR $(TD $(NAN)) $(TD FP_ILOGBNAN) $(TD yes))
* )
*/
int ilogb(real x)
{
version(Naked_D_InlineAsm_X86)
{
int y;
asm {
fld x;
fxtract;
fstp ST(0); // drop significand
fistp y; // and return the exponent
}
return y;
} else static if (real.mant_dig==64) { // 80-bit reals
alias floatTraits!(real) F;
short e = cast(short)((cast(short *)&x)[F.EXPPOS_SHORT] & F.EXPMASK);
if (e == F.EXPMASK) {
// BUG: should also set the invalid exception
ulong s = *cast(ulong *)&x;
if (s == 0x8000_0000_0000_0000) {
return FP_ILOGBINFINITY;
}
else return FP_ILOGBNAN;
}
if (e==0) {
ulong s = *cast(ulong *)&x;
if (s == 0x0000_0000_0000_0000) {
// BUG: should also set the invalid exception
return FP_ILOGB0;
}
// Denormals
x *= F.RECIP_EPSILON;
short f = (cast(short *)&x)[F.EXPPOS_SHORT];
return -0x3FFF - (63-f);
}
return e - 0x3FFF;
} else {
return tango.stdc.math.ilogbl(x);
}
}
version (X86)
{
enum int FP_ILOGB0 = -int.max-1;
enum int FP_ILOGBNAN = -int.max-1;
enum int FP_ILOGBINFINITY = -int.max-1;
} else {
alias tango.stdc.math.FP_ILOGB0 FP_ILOGB0;
alias tango.stdc.math.FP_ILOGBNAN FP_ILOGBNAN;
enum int FP_ILOGBINFINITY = int.max;
}
debug(UnitTest) {
unittest {
assert(ilogb(1.0) == 0);
assert(ilogb(65536) == 16);
assert(ilogb(-65536) == 16);
assert(ilogb(1.0 / 65536) == -16);
assert(ilogb(real.nan) == FP_ILOGBNAN);
assert(ilogb(0.0) == FP_ILOGB0);
assert(ilogb(-0.0) == FP_ILOGB0);
// denormal
assert(ilogb(0.125 * real.min) == real.min_exp - 4);
assert(ilogb(real.infinity) == FP_ILOGBINFINITY);
}
}
/*****************************************
* Extracts the exponent of x as a signed integral value.
*
* If x is subnormal, it is treated as if it were normalized.
* For a positive, finite x:
*
* 1 $(LT)= $(I x) * FLT_RADIX$(SUP -logb(x)) $(LT) FLT_RADIX
*
* $(TABLE_SV
* $(TR $(TH x) $(TH logb(x)) $(TH divide by 0?) )
* $(TR $(TD $(PLUSMN)$(INFIN)) $(TD +$(INFIN)) $(TD no))
* $(TR $(TD $(PLUSMN)0.0) $(TD -$(INFIN)) $(TD yes) )
* )
*/
real logb(real x)
{
version(Naked_D_InlineAsm_X86)
{
asm {
fld x;
fxtract;
fstp ST(0);//, ST; // drop significand
}
} else {
return tango.stdc.math.logbl(x);
}
}
debug(UnitTest) {
unittest {
assert(logb(real.infinity)== real.infinity);
assert(isIdentical(logb(NaN(0xFCD)), NaN(0xFCD)));
assert(logb(1.0)== 0.0);
assert(logb(-65536) == 16);
assert(logb(0.0)== -real.infinity);
assert(ilogb(0.125*real.min) == real.min_exp-4);
}
}
/*************************************
* Efficiently calculates x * 2$(SUP n).
*
* scalbn handles underflow and overflow in
* the same fashion as the basic arithmetic operators.
*
* $(TABLE_SV
* $(TR $(TH x) $(TH scalb(x)))
* $(TR $(TD $(PLUSMNINF)) $(TD $(PLUSMNINF)) )
* $(TR $(TD $(PLUSMN)0.0) $(TD $(PLUSMN)0.0) )
* )
*/
real scalbn(real x, int n)
{
version(Naked_D_InlineAsm_X86)
{
asm {
fild n;
fld x;
fscale;
fstp ST(1);//, ST;
}
} else {
// NOTE: Not implemented in DMD
return tango.stdc.math.scalbnl(x, n);
}
}
debug(UnitTest) {
unittest {
assert(scalbn(-real.infinity, 5) == -real.infinity);
assert(isIdentical(scalbn(NaN(0xABC),7), NaN(0xABC)));
}
}
/**
* Returns the positive difference between x and y.
*
* If either of x or y is $(NAN), it will be returned.
* Returns:
* $(TABLE_SV
* $(SVH Arguments, fdim(x, y))
* $(SV x $(GT) y, x - y)
* $(SV x $(LT)= y, +0.0)
* )
*/
real fdim(real x, real y)
{
return (x !<= y) ? x - y : +0.0;
}
debug(UnitTest) {
unittest {
assert(isIdentical(fdim(NaN(0xABC), 58.2), NaN(0xABC)));
}
}
/*******************************
* Returns |x|
*
* $(TABLE_SV
* $(TR $(TH x) $(TH fabs(x)))
* $(TR $(TD $(PLUSMN)0.0) $(TD +0.0) )
* $(TR $(TD $(PLUSMN)$(INFIN)) $(TD +$(INFIN)) )
* )
*/
real fabs(real x) /* intrinsic */
{
version(D_InlineAsm_X86)
{
asm {
fld x;
fabs;
}
}
else
{
return tango.stdc.math.fabsl(x);
}
}
unittest {
assert(isIdentical(fabs(NaN(0xABC)), NaN(0xABC)));
}
/**
* Returns (x * y) + z, rounding only once according to the
* current rounding mode.
*
* BUGS: Not currently implemented - rounds twice.
*/
real fma(float x, float y, float z)
{
return (x * y) + z;
}
/**
* Calculate cos(y) + i sin(y).
*
* On x86 CPUs, this is a very efficient operation;
* almost twice as fast as calculating sin(y) and cos(y)
* seperately, and is the preferred method when both are required.
*/
creal expi(real y)
{
version(Naked_D_InlineAsm_X86)
{
asm {
fld y;
fsincos;
fxch ST(1), ST(0);
}
}
else
{
return tango.stdc.math.cosl(y) + tango.stdc.math.sinl(y)*1i;
}
}
debug(UnitTest) {
unittest
{
assert(expi(1.3e5L) == tango.stdc.math.cosl(1.3e5L) + tango.stdc.math.sinl(1.3e5L) * 1i);
assert(expi(0.0L) == 1L + 0.0Li);
}
}
/*********************************
* Returns !=0 if e is a NaN.
*/
int isNaN(real x)
{
alias floatTraits!(real) F;
static if (real.mant_dig==53) { // double
ulong* p = cast(ulong *)&x;
return ((*p & 0x7FF0_0000_0000_0000) == 0x7FF0_0000_0000_0000) && *p & 0x000F_FFFF_FFFF_FFFF;
} else static if (real.mant_dig==64) { // real80
ushort e = F.EXPMASK & (cast(ushort *)&x)[F.EXPPOS_SHORT];
ulong* ps = cast(ulong *)&x;
return e == F.EXPMASK &&
*ps & 0x7FFF_FFFF_FFFF_FFFF; // not infinity
} else static if (real.mant_dig==113) { // quadruple
ushort e = F.EXPMASK & (cast(ushort *)&x)[F.EXPPOS_SHORT];
ulong* ps = cast(ulong *)&x;
return e == F.EXPMASK &&
(ps[MANTISSA_LSB] | (ps[MANTISSA_MSB]& 0x0000_FFFF_FFFF_FFFF))!=0;
} else {
return x!=x;
}
}
debug(UnitTest) {
unittest
{
assert(isNaN(float.nan));
assert(isNaN(-double.nan));
assert(isNaN(real.nan));
assert(!isNaN(53.6));
assert(!isNaN(float.infinity));
}
}
/**
* Returns !=0 if x is normalized.
*
* (Need one for each format because subnormal
* floats might be converted to normal reals)
*/
int isNormal(X)(X x)
{
alias floatTraits!(X) F;
static if(real.mant_dig==106) { // doubledouble
// doubledouble is normal if the least significant part is normal.
return isNormal((cast(double*)&x)[MANTISSA_LSB]);
} else {
ushort e = F.EXPMASK & (cast(ushort *)&x)[F.EXPPOS_SHORT];
return (e != F.EXPMASK && e!=0);
}
}
debug(UnitTest) {
unittest
{
float f = 3;
double d = 500;
real e = 10e+48;
assert(isNormal(f));
assert(isNormal(d));
assert(isNormal(e));
f=d=e=0;
assert(!isNormal(f));
assert(!isNormal(d));
assert(!isNormal(e));
assert(!isNormal(real.infinity));
assert(isNormal(-real.max));
assert(!isNormal(real.min/4));
}
}
/*********************************
* Is the binary representation of x identical to y?
*
* Same as ==, except that positive and negative zero are not identical,
* and two $(NAN)s are identical if they have the same 'payload'.
*/
bool isIdentical(real x, real y)
{
// We're doing a bitwise comparison so the endianness is irrelevant.
long* pxs = cast(long *)&x;
long* pys = cast(long *)&y;
static if (real.mant_dig == 53){ //double
return pxs[0] == pys[0];
} else static if (real.mant_dig == 113 || real.mant_dig==106) {
// quadruple or doubledouble
return pxs[0] == pys[0] && pxs[1] == pys[1];
} else { // real80
ushort* pxe = cast(ushort *)&x;
ushort* pye = cast(ushort *)&y;
return pxe[4] == pye[4] && pxs[0] == pys[0];
}
}
/** ditto */
bool isIdentical(ireal x, ireal y) {
return isIdentical(x.im, y.im);
}
/** ditto */
bool isIdentical(creal x, creal y) {
return isIdentical(x.re, y.re) && isIdentical(x.im, y.im);
}
debug(UnitTest) {
unittest {
assert(isIdentical(0.0, 0.0));
assert(!isIdentical(0.0, -0.0));
assert(isIdentical(NaN(0xABC), NaN(0xABC)));
assert(!isIdentical(NaN(0xABC), NaN(218)));
assert(isIdentical(1.234e56, 1.234e56));
assert(isNaN(NaN(0x12345)));
assert(isIdentical(3.1 + NaN(0xDEF) * 1i, 3.1 + NaN(0xDEF)*1i));
assert(!isIdentical(3.1+0.0i, 3.1-0i));
assert(!isIdentical(0.0i, 2.5e58i));
}
}
/*********************************
* Is number subnormal? (Also called "denormal".)
* Subnormals have a 0 exponent and a 0 most significant significand bit,
* but are non-zero.
*/
/* Need one for each format because subnormal floats might
* be converted to normal reals.
*/
int isSubnormal(float f)
{
uint *p = cast(uint *)&f;
return (*p & 0x7F80_0000) == 0 && *p & 0x007F_FFFF;
}
debug(UnitTest) {
unittest
{
float f = -float.min;
assert(!isSubnormal(f));
f/=4;
assert(isSubnormal(f));
}
}
/// ditto
int isSubnormal(double d)
{
uint *p = cast(uint *)&d;
return (p[MANTISSA_MSB] & 0x7FF0_0000) == 0 && (p[MANTISSA_LSB] || p[MANTISSA_MSB] & 0x000F_FFFF);
}
debug(UnitTest) {
unittest
{
double f;
for (f = 1; !isSubnormal(f); f /= 2)
assert(f != 0);
}
}
/// ditto
int isSubnormal(real x)
{
alias floatTraits!(real) F;
static if (real.mant_dig == 53) { // double
return isSubnormal(cast(double)x);
} else static if (real.mant_dig == 113) { // quadruple
ushort e = F.EXPMASK & (cast(ushort *)&x)[F.EXPPOS_SHORT];
long* ps = cast(long *)&x;
return (e == 0 && (((ps[MANTISSA_LSB]|(ps[MANTISSA_MSB]& 0x0000_FFFF_FFFF_FFFF))) !=0));
} else static if (real.mant_dig==64) { // real80
ushort* pe = cast(ushort *)&x;
long* ps = cast(long *)&x;
return (pe[F.EXPPOS_SHORT] & F.EXPMASK) == 0 && *ps > 0;
} else { // double double
return isSubnormal((cast(double*)&x)[MANTISSA_MSB]);
}
}
debug(UnitTest) {
unittest
{
real f;
for (f = 1; !isSubnormal(f); f /= 2)
assert(f != 0);
}
}
/*********************************
* Return !=0 if x is $(PLUSMN)0.
*
* Does not affect any floating-point flags
*/
int isZero(real x)
{
alias floatTraits!(real) F;
static if (real.mant_dig == 53) { // double
return ((*cast(ulong *)&x) & 0x7FFF_FFFF_FFFF_FFFF) == 0;
} else static if (real.mant_dig == 113) { // quadruple
long* ps = cast(long *)&x;
return (ps[MANTISSA_LSB] | (ps[MANTISSA_MSB]& 0x7FFF_FFFF_FFFF_FFFF)) == 0;
} else { // real80
ushort* pe = cast(ushort *)&x;
ulong* ps = cast(ulong *)&x;
return (pe[F.EXPPOS_SHORT] & F.EXPMASK) == 0 && *ps == 0;
}
}
debug(UnitTest) {
unittest
{
assert(isZero(0.0));
assert(isZero(-0.0));
assert(!isZero(2.5));
assert(!isZero(real.min / 1000));
}
}
/*********************************
* Return !=0 if e is $(PLUSMNINF);.
*/
int isInfinity(real x)
{
alias floatTraits!(real) F;
static if (real.mant_dig == 53) { // double
return ((*cast(ulong *)&x) & 0x7FFF_FFFF_FFFF_FFFF) == 0x7FF8_0000_0000_0000;
} else static if(real.mant_dig == 106) { //doubledouble
return (((cast(ulong *)&x)[MANTISSA_MSB]) & 0x7FFF_FFFF_FFFF_FFFF) == 0x7FF8_0000_0000_0000;
} else static if (real.mant_dig == 113) { // quadruple
long* ps = cast(long *)&x;
return (ps[MANTISSA_LSB] == 0)
&& (ps[MANTISSA_MSB] & 0x7FFF_FFFF_FFFF_FFFF) == 0x7FFF_0000_0000_0000;
} else { // real80
ushort e = cast(ushort)(F.EXPMASK & (cast(ushort *)&x)[F.EXPPOS_SHORT]);
ulong* ps = cast(ulong *)&x;
return e == F.EXPMASK && *ps == 0x8000_0000_0000_0000;
}
}
debug(UnitTest) {
unittest
{
assert(isInfinity(float.infinity));
assert(!isInfinity(float.nan));
assert(isInfinity(double.infinity));
assert(isInfinity(-real.infinity));
assert(isInfinity(-1.0 / 0.0));
}
}
/**
* Calculate the next largest floating point value after x.
*
* Return the least number greater than x that is representable as a real;
* thus, it gives the next point on the IEEE number line.
*
* $(TABLE_SV
* $(SVH x, nextUp(x) )
* $(SV -$(INFIN), -real.max )
* $(SV $(PLUSMN)0.0, real.min*real.epsilon )
* $(SV real.max, $(INFIN) )
* $(SV $(INFIN), $(INFIN) )
* $(SV $(NAN), $(NAN) )
* )
*
* Remarks:
* This function is included in the IEEE 754-2008 standard.
*
* nextDoubleUp and nextFloatUp are the corresponding functions for
* the IEEE double and IEEE float number lines.
*/
real nextUp(real x)
{
alias floatTraits!(real) F;
static if (real.mant_dig == 53) { // double
return nextDoubleUp(x);
} else static if(real.mant_dig==113) { // quadruple
ushort e = F.EXPMASK & (cast(ushort *)&x)[F.EXPPOS_SHORT];
if (e == F.EXPMASK) { // NaN or Infinity
if (x == -real.infinity) return -real.max;
return x; // +Inf and NaN are unchanged.
}
ulong* ps = cast(ulong *)&e;
if (ps[MANTISSA_LSB] & 0x8000_0000_0000_0000) { // Negative number
if (ps[MANTISSA_LSB]==0 && ps[MANTISSA_MSB] == 0x8000_0000_0000_0000) { // it was negative zero
ps[MANTISSA_LSB] = 0x0000_0000_0000_0001; // change to smallest subnormal
ps[MANTISSA_MSB] = 0;
return x;
}
--*ps;
if (ps[MANTISSA_LSB]==0) --ps[MANTISSA_MSB];
} else { // Positive number
++ps[MANTISSA_LSB];
if (ps[MANTISSA_LSB]==0) ++ps[MANTISSA_MSB];
}
return x;
} else static if(real.mant_dig==64){ // real80
// For 80-bit reals, the "implied bit" is a nuisance...
ushort *pe = cast(ushort *)&x;
ulong *ps = cast(ulong *)&x;
if ((pe[F.EXPPOS_SHORT] & F.EXPMASK) == F.EXPMASK) {
// First, deal with NANs and infinity
if (x == -real.infinity) return -real.max;
return x; // +Inf and NaN are unchanged.
}
if (pe[F.EXPPOS_SHORT] & 0x8000) { // Negative number -- need to decrease the significand
--*ps;
// Need to mask with 0x7FFF... so subnormals are treated correctly.
if ((*ps & 0x7FFF_FFFF_FFFF_FFFF) == 0x7FFF_FFFF_FFFF_FFFF) {
if (pe[F.EXPPOS_SHORT] == 0x8000) { // it was negative zero
*ps = 1;
pe[F.EXPPOS_SHORT] = 0; // smallest subnormal.
return x;
}
--pe[F.EXPPOS_SHORT];
if (pe[F.EXPPOS_SHORT] == 0x8000) {
return x; // it's become a subnormal, implied bit stays low.
}
*ps = 0xFFFF_FFFF_FFFF_FFFF; // set the implied bit
return x;
}
return x;
} else {
// Positive number -- need to increase the significand.
// Works automatically for positive zero.
++*ps;
if ((*ps & 0x7FFF_FFFF_FFFF_FFFF) == 0) {
// change in exponent
++pe[F.EXPPOS_SHORT];
*ps = 0x8000_0000_0000_0000; // set the high bit
}
}
return x;
} else { // doubledouble
assert(0, "Not implemented");
}
}
/** ditto */
double nextDoubleUp(double x)
{
ulong *ps = cast(ulong *)&x;
if ((*ps & 0x7FF0_0000_0000_0000) == 0x7FF0_0000_0000_0000) {
// First, deal with NANs and infinity
if (x == -x.infinity) return -x.max;
return x; // +INF and NAN are unchanged.
}
if (*ps & 0x8000_0000_0000_0000) { // Negative number
if (*ps == 0x8000_0000_0000_0000) { // it was negative zero
*ps = 0x0000_0000_0000_0001; // change to smallest subnormal
return x;
}
--*ps;
} else { // Positive number
++*ps;
}
return x;
}
/** ditto */
float nextFloatUp(float x)
{
uint *ps = cast(uint *)&x;
if ((*ps & 0x7F80_0000) == 0x7F80_0000) {
// First, deal with NANs and infinity
if (x == -x.infinity) return -x.max;
return x; // +INF and NAN are unchanged.
}
if (*ps & 0x8000_0000) { // Negative number
if (*ps == 0x8000_0000) { // it was negative zero
*ps = 0x0000_0001; // change to smallest subnormal
return x;
}
--*ps;
} else { // Positive number
++*ps;
}
return x;
}
debug(UnitTest) {
unittest {
static if (real.mant_dig == 64) {
// Tests for 80-bit reals
assert(isIdentical(nextUp(NaN(0xABC)), NaN(0xABC)));
// negative numbers
assert( nextUp(-real.infinity) == -real.max );
assert( nextUp(-1-real.epsilon) == -1.0 );
assert( nextUp(-2) == -2.0 + real.epsilon);
// denormals and zero
assert( nextUp(-real.min) == -real.min*(1-real.epsilon) );
assert( nextUp(-real.min*(1-real.epsilon) == -real.min*(1-2*real.epsilon)) );
assert( isIdentical(-0.0L, nextUp(-real.min*real.epsilon)) );
assert( nextUp(-0.0) == real.min*real.epsilon );
assert( nextUp(0.0) == real.min*real.epsilon );
assert( nextUp(real.min*(1-real.epsilon)) == real.min );
assert( nextUp(real.min) == real.min*(1+real.epsilon) );
// positive numbers
assert( nextUp(1) == 1.0 + real.epsilon );
assert( nextUp(2.0-real.epsilon) == 2.0 );
assert( nextUp(real.max) == real.infinity );
assert( nextUp(real.infinity)==real.infinity );
}
assert(isIdentical(nextDoubleUp(NaN(0xABC)), NaN(0xABC)));
// negative numbers
assert( nextDoubleUp(-double.infinity) == -double.max );
assert( nextDoubleUp(-1-double.epsilon) == -1.0 );
assert( nextDoubleUp(-2) == -2.0 + double.epsilon);
// denormals and zero
assert( nextDoubleUp(-double.min) == -double.min*(1-double.epsilon) );
assert( nextDoubleUp(-double.min*(1-double.epsilon) == -double.min*(1-2*double.epsilon)) );
assert( isIdentical(-0.0, nextDoubleUp(-double.min*double.epsilon)) );
assert( nextDoubleUp(0.0) == double.min*double.epsilon );
assert( nextDoubleUp(-0.0) == double.min*double.epsilon );
assert( nextDoubleUp(double.min*(1-double.epsilon)) == double.min );
assert( nextDoubleUp(double.min) == double.min*(1+double.epsilon) );
// positive numbers
assert( nextDoubleUp(1) == 1.0 + double.epsilon );
assert( nextDoubleUp(2.0-double.epsilon) == 2.0 );
assert( nextDoubleUp(double.max) == double.infinity );
assert(isIdentical(nextFloatUp(NaN(0xABC)), NaN(0xABC)));
assert( nextFloatUp(-float.min) == -float.min*(1-float.epsilon) );
assert( nextFloatUp(1.0) == 1.0+float.epsilon );
assert( nextFloatUp(-0.0) == float.min*float.epsilon);
assert( nextFloatUp(float.infinity)==float.infinity );
assert(nextDown(1.0+real.epsilon)==1.0);
assert(nextDoubleDown(1.0+double.epsilon)==1.0);
assert(nextFloatDown(1.0+float.epsilon)==1.0);
assert(nextafter(1.0+real.epsilon, -real.infinity)==1.0);
}
}
package {
/** Reduces the magnitude of x, so the bits in the lower half of its significand
* are all zero. Returns the amount which needs to be added to x to restore its
* initial value; this amount will also have zeros in all bits in the lower half
* of its significand.
*/
X splitSignificand(X)(ref X x)
{
if (fabs(x) !< X.infinity) return 0; // don't change NaN or infinity
X y = x; // copy the original value
static if (X.mant_dig == float.mant_dig) {
uint *ps = cast(uint *)&x;
(*ps) &= 0xFFFF_FC00;
} else static if (X.mant_dig == 53) {
ulong *ps = cast(ulong *)&x;
(*ps) &= 0xFFFF_FFFF_FC00_0000L;
} else static if (X.mant_dig == 64){ // 80-bit real
// An x87 real80 has 63 bits, because the 'implied' bit is stored explicitly.
// This is annoying, because it means the significand cannot be
// precisely halved. Instead, we split it into 31+32 bits.
ulong *ps = cast(ulong *)&x;
(*ps) &= 0xFFFF_FFFF_0000_0000L;
} else static if (X.mant_dig==113) { // quadruple
ulong *ps = cast(ulong *)&x;
ps[MANTISSA_LSB] &= 0xFF00_0000_0000_0000L;
}
//else static assert(0, "Unsupported size");
return y - x;
}
unittest {
double x = -0x1.234_567A_AAAA_AAp+250;
double y = splitSignificand(x);
assert(x == -0x1.234_5678p+250);
assert(y == -0x0.000_000A_AAAA_A8p+248);
assert(x + y == -0x1.234_567A_AAAA_AAp+250);
}
}
/**
* Calculate the next smallest floating point value before x.
*
* Return the greatest number less than x that is representable as a real;
* thus, it gives the previous point on the IEEE number line.
*
* $(TABLE_SV
* $(SVH x, nextDown(x) )
* $(SV $(INFIN), real.max )
* $(SV $(PLUSMN)0.0, -real.min*real.epsilon )
* $(SV -real.max, -$(INFIN) )
* $(SV -$(INFIN), -$(INFIN) )
* $(SV $(NAN), $(NAN) )
* )
*
* Remarks:
* This function is included in the IEEE 754-2008 standard.
*
* nextDoubleDown and nextFloatDown are the corresponding functions for
* the IEEE double and IEEE float number lines.
*/
real nextDown(real x)
{
return -nextUp(-x);
}
/** ditto */
double nextDoubleDown(double x)
{
return -nextDoubleUp(-x);
}
/** ditto */
float nextFloatDown(float x)
{
return -nextFloatUp(-x);
}
debug(UnitTest) {
unittest {
assert( nextDown(1.0 + real.epsilon) == 1.0);
}
}
/**
* Calculates the next representable value after x in the direction of y.
*
* If y > x, the result will be the next largest floating-point value;
* if y < x, the result will be the next smallest value.
* If x == y, the result is y.
*
* Remarks:
* This function is not generally very useful; it's almost always better to use
* the faster functions nextUp() or nextDown() instead.
*
* IEEE 754 requirements not implemented:
* The FE_INEXACT and FE_OVERFLOW exceptions will be raised if x is finite and
* the function result is infinite. The FE_INEXACT and FE_UNDERFLOW
* exceptions will be raised if the function value is subnormal, and x is
* not equal to y.
*/
real nextafter(real x, real y)
{
if (x==y) return y;
return (y>x) ? nextUp(x) : nextDown(x);
}
/**************************************
* To what precision is x equal to y?
*
* Returns: the number of significand bits which are equal in x and y.
* eg, 0x1.F8p+60 and 0x1.F1p+60 are equal to 5 bits of precision.
*
* $(TABLE_SV
* $(SVH3 x, y, feqrel(x, y) )
* $(SV3 x, x, typeof(x).mant_dig )
* $(SV3 x, $(GT)= 2*x, 0 )
* $(SV3 x, $(LE)= x/2, 0 )
* $(SV3 $(NAN), any, 0 )
* $(SV3 any, $(NAN), 0 )
* )
*
* Remarks:
* This is a very fast operation, suitable for use in speed-critical code.
*/
int feqrel(X)(X x, X y)
{
/* Public Domain. Author: Don Clugston, 18 Aug 2005.
*/
static assert(is(X==real) || is(X==double) || is(X==float), "Only float, double, and real are supported by feqrel");
static if (X.mant_dig == 106) { // doubledouble.
int a = feqrel(cast(double*)(&x)[MANTISSA_MSB], cast(double*)(&y)[MANTISSA_MSB]);
if (a != double.mant_dig) return a;
return double.mant_dig + feqrel(cast(double*)(&x)[MANTISSA_LSB], cast(double*)(&y)[MANTISSA_LSB]);
} else static if (X.mant_dig==64 || X.mant_dig==113
|| X.mant_dig==53 || X.mant_dig == 24) {
if (x == y) return X.mant_dig; // ensure diff!=0, cope with INF.
X diff = fabs(x - y);
ushort *pa = cast(ushort *)(&x);
ushort *pb = cast(ushort *)(&y);
ushort *pd = cast(ushort *)(&diff);
alias floatTraits!(X) F;
// The difference in abs(exponent) between x or y and abs(x-y)
// is equal to the number of significand bits of x which are
// equal to y. If negative, x and y have different exponents.
// If positive, x and y are equal to 'bitsdiff' bits.
// AND with 0x7FFF to form the absolute value.
// To avoid out-by-1 errors, we subtract 1 so it rounds down
// if the exponents were different. This means 'bitsdiff' is
// always 1 lower than we want, except that if bitsdiff==0,
// they could have 0 or 1 bits in common.
static if (X.mant_dig==64 || X.mant_dig==113) { // real80 or quadruple
int bitsdiff = ( ((pa[F.EXPPOS_SHORT] & F.EXPMASK)
+ (pb[F.EXPPOS_SHORT]& F.EXPMASK)
- (0x8000-F.EXPMASK))>>1)
- pd[F.EXPPOS_SHORT];
} else static if (X.mant_dig==53) { // double
int bitsdiff = (( ((pa[F.EXPPOS_SHORT] & F.EXPMASK)
+ (pb[F.EXPPOS_SHORT] & F.EXPMASK)
- (0x8000-F.EXPMASK))>>1)
- (pd[F.EXPPOS_SHORT] & F.EXPMASK))>>4;
} else static if (X.mant_dig == 24) { // float
int bitsdiff = (( ((pa[F.EXPPOS_SHORT] & F.EXPMASK)
+ (pb[F.EXPPOS_SHORT] & F.EXPMASK)
- (0x8000-F.EXPMASK))>>1)
- (pd[F.EXPPOS_SHORT] & F.EXPMASK))>>7;
}
if (pd[F.EXPPOS_SHORT] == 0)
{ // Difference is denormal
// For denormals, we need to add the number of zeros that
// lie at the start of diff's significand.
// We do this by multiplying by 2^real.mant_dig
diff *= F.RECIP_EPSILON;
return bitsdiff + X.mant_dig - pd[F.EXPPOS_SHORT];
}
if (bitsdiff > 0)
return bitsdiff + 1; // add the 1 we subtracted before
// Avoid out-by-1 errors when factor is almost 2.
static if (X.mant_dig==64 || X.mant_dig==113) { // real80 or quadruple
return (bitsdiff == 0) ? (pa[F.EXPPOS_SHORT] == pb[F.EXPPOS_SHORT]) : 0;
} else static if (X.mant_dig == 53 || X.mant_dig == 24) { // double or float
return (bitsdiff == 0 && !((pa[F.EXPPOS_SHORT] ^ pb[F.EXPPOS_SHORT])& F.EXPMASK)) ? 1 : 0;
}
} else {
assert(0, "Unsupported");
}
}
debug(UnitTest) {
unittest
{
// Exact equality
assert(feqrel(real.max,real.max)==real.mant_dig);
assert(feqrel(0.0L,0.0L)==real.mant_dig);
assert(feqrel(7.1824L,7.1824L)==real.mant_dig);
assert(feqrel(real.infinity,real.infinity)==real.mant_dig);
// a few bits away from exact equality
real w=1;
for (int i=1; i<real.mant_dig-1; ++i) {
assert(feqrel(1+w*real.epsilon,1.0L)==real.mant_dig-i);
assert(feqrel(1-w*real.epsilon,1.0L)==real.mant_dig-i);
assert(feqrel(1.0L,1+(w-1)*real.epsilon)==real.mant_dig-i+1);
w*=2;
}
assert(feqrel(1.5+real.epsilon,1.5L)==real.mant_dig-1);
assert(feqrel(1.5-real.epsilon,1.5L)==real.mant_dig-1);
assert(feqrel(1.5-real.epsilon,1.5+real.epsilon)==real.mant_dig-2);
assert(feqrel(real.min/8,real.min/17)==3);
// Numbers that are close
assert(feqrel(0x1.Bp+84, 0x1.B8p+84)==5);
assert(feqrel(0x1.8p+10, 0x1.Cp+10)==2);
assert(feqrel(1.5*(1-real.epsilon), 1.0L)==2);
assert(feqrel(1.5, 1.0)==1);
assert(feqrel(2*(1-real.epsilon), 1.0L)==1);
// Factors of 2
assert(feqrel(real.max,real.infinity)==0);
assert(feqrel(2*(1-real.epsilon), 1.0L)==1);
assert(feqrel(1.0, 2.0)==0);
assert(feqrel(4.0, 1.0)==0);
// Extreme inequality
assert(feqrel(real.nan,real.nan)==0);
assert(feqrel(0.0L,-real.nan)==0);
assert(feqrel(real.nan,real.infinity)==0);
assert(feqrel(real.infinity,-real.infinity)==0);
assert(feqrel(-real.max,real.infinity)==0);
assert(feqrel(real.max,-real.max)==0);
// floats
assert(feqrel(2.1f, 2.1f)==float.mant_dig);
assert(feqrel(1.5f, 1.0f)==1);
}
}
/*********************************
* Return 1 if sign bit of e is set, 0 if not.
*/
int signbit(real x)
{
return ((cast(ubyte *)&x)[floatTraits!(real).SIGNPOS_BYTE] & 0x80) != 0;
}
debug(UnitTest) {
unittest
{
assert(!signbit(float.nan));
assert(signbit(-float.nan));
assert(!signbit(168.1234));
assert(signbit(-168.1234));
assert(!signbit(0.0));
assert(signbit(-0.0));
}
}
/*********************************
* Return a value composed of to with from's sign bit.
*/
real copysign(real to, real from)
{
ubyte* pto = cast(ubyte *)&to;
ubyte* pfrom = cast(ubyte *)&from;
alias floatTraits!(real) F;
pto[F.SIGNPOS_BYTE] &= 0x7F;
pto[F.SIGNPOS_BYTE] |= pfrom[F.SIGNPOS_BYTE] & 0x80;
return to;
}
debug(UnitTest) {
unittest
{
real e;
e = copysign(21, 23.8);
assert(e == 21);
e = copysign(-21, 23.8);
assert(e == 21);
e = copysign(21, -23.8);
assert(e == -21);
e = copysign(-21, -23.8);
assert(e == -21);
e = copysign(real.nan, -23.8);
assert(isNaN(e) && signbit(e));
}
}
/** Return the value that lies halfway between x and y on the IEEE number line.
*
* Formally, the result is the arithmetic mean of the binary significands of x
* and y, multiplied by the geometric mean of the binary exponents of x and y.
* x and y must have the same sign, and must not be NaN.
* Note: this function is useful for ensuring O(log n) behaviour in algorithms
* involving a 'binary chop'.
*
* Special cases:
* If x and y are within a factor of 2, (ie, feqrel(x, y) > 0), the return value
* is the arithmetic mean (x + y) / 2.
* If x and y are even powers of 2, the return value is the geometric mean,
* ieeeMean(x, y) = sqrt(x * y).
*
*/
T ieeeMean(T)(T x, T y)
in {
// both x and y must have the same sign, and must not be NaN.
assert(signbit(x) == signbit(y));
assert(x<>=0 && y<>=0);
}
body {
// Runtime behaviour for contract violation:
// If signs are opposite, or one is a NaN, return 0.
if (!((x>=0 && y>=0) || (x<=0 && y<=0))) return 0.0;
// The implementation is simple: cast x and y to integers,
// average them (avoiding overflow), and cast the result back to a floating-point number.
alias floatTraits!(real) F;
T u;
static if (T.mant_dig==64) { // real80
// There's slight additional complexity because they are actually
// 79-bit reals...
ushort *ue = cast(ushort *)&u;
ulong *ul = cast(ulong *)&u;
ushort *xe = cast(ushort *)&x;
ulong *xl = cast(ulong *)&x;
ushort *ye = cast(ushort *)&y;
ulong *yl = cast(ulong *)&y;
// Ignore the useless implicit bit. (Bonus: this prevents overflows)
ulong m = ((*xl) & 0x7FFF_FFFF_FFFF_FFFFL) + ((*yl) & 0x7FFF_FFFF_FFFF_FFFFL);
ushort e = cast(ushort)((xe[F.EXPPOS_SHORT] & 0x7FFF) + (ye[F.EXPPOS_SHORT] & 0x7FFF));
if (m & 0x8000_0000_0000_0000L) {
++e;
m &= 0x7FFF_FFFF_FFFF_FFFFL;
}
// Now do a multi-byte right shift
uint c = e & 1; // carry
e >>= 1;
m >>>= 1;
if (c) m |= 0x4000_0000_0000_0000L; // shift carry into significand
if (e) *ul = m | 0x8000_0000_0000_0000L; // set implicit bit...
else *ul = m; // ... unless exponent is 0 (denormal or zero).
ue[4]= e | (xe[F.EXPPOS_SHORT]& F.SIGNMASK); // restore sign bit
} else static if(T.mant_dig == 113) { //quadruple
// This would be trivial if 'ucent' were implemented...
ulong *ul = cast(ulong *)&u;
ulong *xl = cast(ulong *)&x;
ulong *yl = cast(ulong *)&y;
// Multi-byte add, then multi-byte right shift.
ulong mh = ((xl[MANTISSA_MSB] & 0x7FFF_FFFF_FFFF_FFFFL)
+ (yl[MANTISSA_MSB] & 0x7FFF_FFFF_FFFF_FFFFL));
// Discard the lowest bit (to avoid overflow)
ulong ml = (xl[MANTISSA_LSB]>>>1) + (yl[MANTISSA_LSB]>>>1);
// add the lowest bit back in, if necessary.
if (xl[MANTISSA_LSB] & yl[MANTISSA_LSB] & 1) {
++ml;
if (ml==0) ++mh;
}
mh >>>=1;
ul[MANTISSA_MSB] = mh | (xl[MANTISSA_MSB] & 0x8000_0000_0000_0000);
ul[MANTISSA_LSB] = ml;
} else static if (T.mant_dig == double.mant_dig) {
ulong *ul = cast(ulong *)&u;
ulong *xl = cast(ulong *)&x;
ulong *yl = cast(ulong *)&y;
ulong m = (((*xl) & 0x7FFF_FFFF_FFFF_FFFFL) + ((*yl) & 0x7FFF_FFFF_FFFF_FFFFL)) >>> 1;
m |= ((*xl) & 0x8000_0000_0000_0000L);
*ul = m;
} else static if (T.mant_dig == float.mant_dig) {
uint *ul = cast(uint *)&u;
uint *xl = cast(uint *)&x;
uint *yl = cast(uint *)&y;
uint m = (((*xl) & 0x7FFF_FFFF) + ((*yl) & 0x7FFF_FFFF)) >>> 1;
m |= ((*xl) & 0x8000_0000);
*ul = m;
} else {
assert(0, "Not implemented");
}
return u;
}
debug(UnitTest) {
unittest {
assert(ieeeMean(-0.0,-1e-20)<0);
assert(ieeeMean(0.0,1e-20)>0);
assert(ieeeMean(1.0L,4.0L)==2L);
assert(ieeeMean(2.0*1.013,8.0*1.013)==4*1.013);
assert(ieeeMean(-1.0L,-4.0L)==-2L);
assert(ieeeMean(-1.0,-4.0)==-2);
assert(ieeeMean(-1.0f,-4.0f)==-2f);
assert(ieeeMean(-1.0,-2.0)==-1.5);
assert(ieeeMean(-1*(1+8*real.epsilon),-2*(1+8*real.epsilon))==-1.5*(1+5*real.epsilon));
assert(ieeeMean(0x1p60,0x1p-10)==0x1p25);
static if (real.mant_dig==64) { // x87, 80-bit reals
assert(ieeeMean(1.0L,real.infinity)==0x1p8192L);
assert(ieeeMean(0.0L,real.infinity)==1.5);
}
assert(ieeeMean(0.5*real.min*(1-4*real.epsilon),0.5*real.min)==0.5*real.min*(1-2*real.epsilon));
}
}
// Functions for NaN payloads
/*
* A 'payload' can be stored in the significand of a $(NAN). One bit is required
* to distinguish between a quiet and a signalling $(NAN). This leaves 22 bits
* of payload for a float; 51 bits for a double; 62 bits for an 80-bit real;
* and 111 bits for a 128-bit quad.
*/
/**
* Create a $(NAN), storing an integer inside the payload.
*
* For 80-bit or 128-bit reals, the largest possible payload is 0x3FFF_FFFF_FFFF_FFFF.
* For doubles, it is 0x3_FFFF_FFFF_FFFF.
* For floats, it is 0x3F_FFFF.
*/
real NaN(ulong payload)
{
static if (real.mant_dig == 64) { //real80
ulong v = 3; // implied bit = 1, quiet bit = 1
} else {
ulong v = 2; // no implied bit. quiet bit = 1
}
ulong a = payload;
// 22 Float bits
ulong w = a & 0x3F_FFFF;
a -= w;
v <<=22;
v |= w;
a >>=22;
// 29 Double bits
v <<=29;
w = a & 0xFFF_FFFF;
v |= w;
a -= w;
a >>=29;
static if (real.mant_dig == 53) { // double
v |=0x7FF0_0000_0000_0000;
real x;
* cast(ulong *)(&x) = v;
return x;
} else {
v <<=11;
a &= 0x7FF;
v |= a;
real x = real.nan;
// Extended real bits
static if (real.mant_dig==113) { //quadruple
v<<=1; // there's no implicit bit
version(LittleEndian) {
*cast(ulong*)(6+cast(ubyte*)(&x)) = v;
} else {
*cast(ulong*)(2+cast(ubyte*)(&x)) = v;
}
} else { // real80
* cast(ulong *)(&x) = v;
}
return x;
}
}
/**
* Extract an integral payload from a $(NAN).
*
* Returns:
* the integer payload as a ulong.
*
* For 80-bit or 128-bit reals, the largest possible payload is 0x3FFF_FFFF_FFFF_FFFF.
* For doubles, it is 0x3_FFFF_FFFF_FFFF.
* For floats, it is 0x3F_FFFF.
*/
ulong getNaNPayload(real x)
{
assert(isNaN(x));
static if (real.mant_dig == 53) {
ulong m = *cast(ulong *)(&x);
// Make it look like an 80-bit significand.
// Skip exponent, and quiet bit
m &= 0x0007_FFFF_FFFF_FFFF;
m <<= 10;
} else static if (real.mant_dig==113) { // quadruple
version(LittleEndian) {
ulong m = *cast(ulong*)(6+cast(ubyte*)(&x));
} else {
ulong m = *cast(ulong*)(2+cast(ubyte*)(&x));
}
m>>=1; // there's no implicit bit
} else {
ulong m = *cast(ulong *)(&x);
}
// ignore implicit bit and quiet bit
ulong f = m & 0x3FFF_FF00_0000_0000L;
ulong w = f >>> 40;
w |= (m & 0x00FF_FFFF_F800L) << (22 - 11);
w |= (m & 0x7FF) << 51;
return w;
}
debug(UnitTest) {
unittest {
real nan4 = NaN(0x789_ABCD_EF12_3456);
static if (real.mant_dig == 64 || real.mant_dig==113) {
assert (getNaNPayload(nan4) == 0x789_ABCD_EF12_3456);
} else {
assert (getNaNPayload(nan4) == 0x1_ABCD_EF12_3456);
}
double nan5 = nan4;
assert (getNaNPayload(nan5) == 0x1_ABCD_EF12_3456);
float nan6 = nan4;
assert (getNaNPayload(nan6) == 0x12_3456);
nan4 = NaN(0xFABCD);
assert (getNaNPayload(nan4) == 0xFABCD);
nan6 = nan4;
assert (getNaNPayload(nan6) == 0xFABCD);
nan5 = NaN(0x100_0000_0000_3456);
assert(getNaNPayload(nan5) == 0x0000_0000_3456);
}
}
|