| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077 | /** * Elementary Mathematical Functions * * Copyright: Portions Copyright (C) 2001-2005 Digital Mars. * License: BSD style: $(LICENSE), Digital Mars. * Authors: Walter Bright, Don Clugston, Sean Kelly */ /* Portions of this code were taken from Phobos std.math, which has the following * copyright notice: * * Author: * Walter Bright * Copyright: * Copyright (c) 2001-2005 by Digital Mars, * All Rights Reserved, * www.digitalmars.com * License: * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * * <ul> * <li> The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * </li> * <li> Altered source versions must be plainly marked as such, and must not * be misrepresented as being the original software. * </li> * <li> This notice may not be removed or altered from any source * distribution. * </li> * </ul> */ /** * Macros: * NAN = $(RED NAN) * TEXTNAN = $(RED NAN:$1 ) * SUP = <span style="vertical-align:super;font-size:smaller">$0</span> * GAMMA = Γ * INTEGRAL = ∫ * INTEGRATE = $(BIG ∫<sub>$(SMALL $1)</sub><sup>$2</sup>) * POWER = $1<sup>$2</sup> * BIGSUM = $(BIG Σ <sup>$2</sup><sub>$(SMALL $1)</sub>) * CHOOSE = $(BIG () <sup>$(SMALL $1)</sup><sub>$(SMALL $2)</sub> $(BIG )) * PLUSMN = ± * INFIN = ∞ * PLUSMNINF = ±∞ * PI = π * LT = < * GT = > * SQRT = &radix; * HALF = ½ * TABLE_SV = <table border=1 cellpadding=4 cellspacing=0> * <caption>Special Values</caption> * $0</table> * SVH = $(TR $(TH $1) $(TH $2)) * SV = $(TR $(TD $1) $(TD $2)) * TABLE_DOMRG = <table border=1 cellpadding=4 cellspacing=0>$0</table> * DOMAIN = $(TR $(TD Domain) $(TD $0)) * RANGE = $(TR $(TD Range) $(TD $0)) */ module tango.math.Math; static import tango.stdc.math; private import tango.math.IEEE; version(GNU){ // GDC is a filthy liar. It can't actually do inline asm. } else version(TangoNoAsm) { } else version(D_InlineAsm_X86) { version = Naked_D_InlineAsm_X86; } version(LDC) { import ldc.intrinsics; } /* * Constants */ enum real E = 2.7182818284590452354L; /** e */ // 3.32193 fldl2t 0x1.5BF0A8B1_45769535_5FF5p+1L enum real LOG2T = 0x1.a934f0979a3715fcp+1; /** $(SUB log, 2)10 */ // 1.4427 fldl2e enum real LOG2E = 0x1.71547652b82fe178p+0; /** $(SUB log, 2)e */ // 0.30103 fldlg2 enum real LOG2 = 0x1.34413509f79fef32p-2; /** $(SUB log, 10)2 */ enum real LOG10E = 0.43429448190325182765; /** $(SUB log, 10)e */ enum real LN2 = 0x1.62e42fefa39ef358p-1; /** ln 2 */ // 0.693147 fldln2 enum real LN10 = 2.30258509299404568402; /** ln 10 */ enum real PI = 0x1.921fb54442d1846ap+1; /** $(_PI) */ // 3.14159 fldpi enum real PI_2 = 1.57079632679489661923; /** $(PI) / 2 */ enum real PI_4 = 0.78539816339744830962; /** $(PI) / 4 */ enum real M_1_PI = 0.31830988618379067154; /** 1 / $(PI) */ enum real M_2_PI = 0.63661977236758134308; /** 2 / $(PI) */ enum real M_2_SQRTPI = 1.12837916709551257390; /** 2 / $(SQRT)$(PI) */ enum real SQRT2 = 1.41421356237309504880; /** $(SQRT)2 */ enum real SQRT1_2 = 0.70710678118654752440; /** $(SQRT)$(HALF) */ //enum real SQRTPI = 1.77245385090551602729816748334114518279754945612238L; /** √π */ //enum real SQRT2PI = 2.50662827463100050242E0L; /** √(2 π) */ //enum real SQRTE = 1.64872127070012814684865078781416357L; /** √(e) */ enum real MAXLOG = 0x1.62e42fefa39ef358p+13L; /** log(real.max) */ enum real MINLOG = -0x1.6436716d5406e6d8p+13L; /** log(real.min*real.epsilon) */ enum real EULERGAMMA = 0.57721_56649_01532_86060_65120_90082_40243_10421_59335_93992L; /** Euler-Mascheroni enumant 0.57721566.. */ /* * Primitives */ /** * Calculates the absolute value * * For complex numbers, abs(z) = sqrt( $(POWER z.re, 2) + $(POWER z.im, 2) ) * = hypot(z.re, z.im). */ real abs(real x) { return tango.math.IEEE.fabs(x); } /** ditto */ long abs(long x) { return x>=0 ? x : -x; } /** ditto */ int abs(int x) { return x>=0 ? x : -x; } /** ditto */ real abs(creal z) { return hypot(z.re, z.im); } /** ditto */ real abs(ireal y) { return tango.math.IEEE.fabs(y.im); } debug(UnitTest) { unittest { assert(isIdentical(0.0L,abs(-0.0L))); assert(isNaN(abs(real.nan))); assert(abs(-real.infinity) == real.infinity); assert(abs(-3.2Li) == 3.2L); assert(abs(71.6Li) == 71.6L); assert(abs(-56) == 56); assert(abs(2321312L) == 2321312L); assert(abs(-1.0L+1.0Li) == sqrt(2.0L)); } } /** * Complex conjugate * * conj(x + iy) = x - iy * * Note that z * conj(z) = $(POWER z.re, 2) + $(POWER z.im, 2) * is always a real number */ creal conj(creal z) { return z.re - z.im*1i; } /** ditto */ ireal conj(ireal y) { return -y; } debug(UnitTest) { unittest { assert(conj(7 + 3i) == 7-3i); ireal z = -3.2Li; assert(conj(z) == -z); } } private { // Return the type which would be returned by a max or min operation template minmaxtype(T...){ static if(T.length == 1) alias T[0] minmaxtype; else static if(T.length > 2) alias minmaxtype!(minmaxtype!(T[0..2]), T[2..$]) minmaxtype; else alias typeof (T[1].init > T[0].init ? T[1].init : T[0].init) minmaxtype; } } /** Return the minimum of the supplied arguments. * * Note: If the arguments are floating-point numbers, and at least one is a NaN, * the result is undefined. */ minmaxtype!(T) min(T...)(T arg){ static if(arg.length == 1) return arg[0]; else static if(arg.length == 2) return arg[1] < arg[0] ? arg[1] : arg[0]; static if(arg.length > 2) return min(arg[1] < arg[0] ? arg[1] : arg[0], arg[2..$]); } /** Return the maximum of the supplied arguments. * * Note: If the arguments are floating-point numbers, and at least one is a NaN, * the result is undefined. */ minmaxtype!(T) max(T...)(T arg){ static if(arg.length == 1) return arg[0]; else static if(arg.length == 2) return arg[1] > arg[0] ? arg[1] : arg[0]; static if(arg.length > 2) return max(arg[1] > arg[0] ? arg[1] : arg[0], arg[2..$]); } debug(UnitTest) { unittest { assert(max('e', 'f')=='f'); assert(min(3.5, 3.8)==3.5); // check implicit conversion to integer. assert(min(3.5, 18)==3.5); } } /** Returns the minimum number of x and y, favouring numbers over NaNs. * * If both x and y are numbers, the minimum is returned. * If both parameters are NaN, either will be returned. * If one parameter is a NaN and the other is a number, the number is * returned (this behaviour is mandated by IEEE 754R, and is useful * for determining the range of a function). */ real minNum(real x, real y) { if (x<=y || isNaN(y)) return x; else return y; } /** Returns the maximum number of x and y, favouring numbers over NaNs. * * If both x and y are numbers, the maximum is returned. * If both parameters are NaN, either will be returned. * If one parameter is a NaN and the other is a number, the number is * returned (this behaviour is mandated by IEEE 754-2008, and is useful * for determining the range of a function). */ real maxNum(real x, real y) { if (x>=y || isNaN(y)) return x; else return y; } /** Returns the minimum of x and y, favouring NaNs over numbers * * If both x and y are numbers, the minimum is returned. * If both parameters are NaN, either will be returned. * If one parameter is a NaN and the other is a number, the NaN is returned. */ real minNaN(real x, real y) { return (x<=y || isNaN(x))? x : y; } /** Returns the maximum of x and y, favouring NaNs over numbers * * If both x and y are numbers, the maximum is returned. * If both parameters are NaN, either will be returned. * If one parameter is a NaN and the other is a number, the NaN is returned. */ real maxNaN(real x, real y) { return (x>=y || isNaN(x))? x : y; } debug(UnitTest) { unittest { assert(maxNum(NaN(0xABC), 56.1L)== 56.1L); assert(isIdentical(maxNaN(NaN(1389), 56.1L), NaN(1389))); assert(maxNum(28.0, NaN(0xABC))== 28.0); assert(minNum(1e12, NaN(0xABC))== 1e12); assert(isIdentical(minNaN(1e12, NaN(23454)), NaN(23454))); assert(isIdentical(minNum(NaN(489), NaN(23)), NaN(489))); } } /* * Trig Functions */ /*********************************** * Returns cosine of x. x is in radians. * * $(TABLE_SV * $(TR $(TH x) $(TH cos(x)) $(TH invalid?)) * $(TR $(TD $(NAN)) $(TD $(NAN)) $(TD yes) ) * $(TR $(TD $(PLUSMN)$(INFIN)) $(TD $(NAN)) $(TD yes) ) * ) * Bugs: * Results are undefined if |x| >= $(POWER 2,64). */ real cos(real x) /* intrinsic */ { version(LDC) { return llvm_cos(x); } else version(D_InlineAsm_X86) { asm { fld x; fcos; } } else { return tango.stdc.math.cosl(x); } } debug(UnitTest) { unittest { // NaN payloads assert(isIdentical(cos(NaN(314)), NaN(314))); } } /*********************************** * Returns sine of x. x is in radians. * * $(TABLE_SV * $(TR $(TH x) $(TH sin(x)) $(TH invalid?)) * $(TR $(TD $(NAN)) $(TD $(NAN)) $(TD yes)) * $(TR $(TD $(PLUSMN)0.0) $(TD $(PLUSMN)0.0) $(TD no)) * $(TR $(TD $(PLUSMNINF)) $(TD $(NAN)) $(TD yes)) * ) * Bugs: * Results are undefined if |x| >= $(POWER 2,64). */ real sin(real x) /* intrinsic */ { version(LDC) { return llvm_sin(x); } else version(D_InlineAsm_X86) { asm { fld x; fsin; } } else { return tango.stdc.math.sinl(x); } } debug(UnitTest) { unittest { // NaN payloads assert(isIdentical(sin(NaN(314)), NaN(314))); } } version (GNU) { extern (C) real tanl(real); } /** * Returns tangent of x. x is in radians. * * $(TABLE_SV * $(TR $(TH x) $(TH tan(x)) $(TH invalid?)) * $(TR $(TD $(NAN)) $(TD $(NAN)) $(TD yes)) * $(TR $(TD $(PLUSMN)0.0) $(TD $(PLUSMN)0.0) $(TD no)) * $(TR $(TD $(PLUSMN)$(INFIN)) $(TD $(NAN)) $(TD yes)) * ) */ real tan(real x) { version (GNU) { return tanl(x); } else version(LDC) { return tango.stdc.math.tanl(x); } else { asm { fld x[EBP] ; // load theta fxam ; // test for oddball values fstsw AX ; sahf ; jc trigerr ; // x is NAN, infinity, or empty // 387's can handle denormals SC18: fptan ; fstp ST(0) ; // dump X, which is always 1 fstsw AX ; sahf ; jnp Lret ; // C2 = 1 (x is out of range) // Do argument reduction to bring x into range fldpi ; fxch ; SC17: fprem1 ; fstsw AX ; sahf ; jp SC17 ; fstp ST(1) ; // remove pi from stack jmp SC18 ; trigerr: jnp Lret ; // if x is NaN, return x. fstp ST(0) ; // dump x, which will be infinity } return NaN(TANGO_NAN.TAN_DOMAIN); Lret: ; } } debug(UnitTest) { unittest { static real vals[][2] = // angle,tan [ [ 0, 0], [ .5, .5463024898], [ 1, 1.557407725], [ 1.5, 14.10141995], [ 2, -2.185039863], [ 2.5,-.7470222972], [ 3, -.1425465431], [ 3.5, .3745856402], [ 4, 1.157821282], [ 4.5, 4.637332055], [ 5, -3.380515006], [ 5.5,-.9955840522], [ 6, -.2910061914], [ 6.5, .2202772003], [ 10, .6483608275], // special angles [ PI_4, 1], //[ PI_2, real.infinity], // PI_2 is not _exactly_ pi/2. [ 3*PI_4, -1], [ PI, 0], [ 5*PI_4, 1], //[ 3*PI_2, -real.infinity], [ 7*PI_4, -1], [ 2*PI, 0], ]; int i; for (i = 0; i < vals.length; i++) { real x = vals[i][0]; real r = vals[i][1]; real t = tan(x); //printf("tan(%Lg) = %Lg, should be %Lg\n", x, t, r); if (!isIdentical(r, t)) assert(fabs(r-t) <= .0000001); x = -x; r = -r; t = tan(x); //printf("tan(%Lg) = %Lg, should be %Lg\n", x, t, r); if (!isIdentical(r, t) && !(r!<>=0 && t!<>=0)) assert(fabs(r-t) <= .0000001); } // overflow assert(isNaN(tan(real.infinity))); assert(isNaN(tan(-real.infinity))); // NaN propagation assert(isIdentical( tan(NaN(0x0123L)), NaN(0x0123L) )); } } /***************************************** * Sine, cosine, and arctangent of multiple of π * * Accuracy is preserved for large values of x. */ real cosPi(real x) { return cos((x%2.0)*PI); } /** ditto */ real sinPi(real x) { return sin((x%2.0)*PI); } /** ditto */ real atanPi(real x) { return PI * atan(x); // BUG: Fix this. } debug(UnitTest) { unittest { assert(isIdentical(sinPi(0.0), 0.0)); assert(isIdentical(sinPi(-0.0), -0.0)); assert(isIdentical(atanPi(0.0), 0.0)); assert(isIdentical(atanPi(-0.0), -0.0)); } } /*********************************** * sine, complex and imaginary * * sin(z) = sin(z.re)*cosh(z.im) + cos(z.re)*sinh(z.im)i * * If both sin(θ) and cos(θ) are required, * it is most efficient to use expi(&theta). */ creal sin(creal z) { creal cs = expi(z.re); return cs.im * cosh(z.im) + cs.re * sinh(z.im) * 1i; } /** ditto */ ireal sin(ireal y) { return cosh(y.im)*1i; } debug(UnitTest) { unittest { assert(sin(0.0+0.0i) == 0.0); assert(sin(2.0+0.0i) == sin(2.0L) ); } } /*********************************** * cosine, complex and imaginary * * cos(z) = cos(z.re)*cosh(z.im) + sin(z.re)*sinh(z.im)i */ creal cos(creal z) { creal cs = expi(z.re); return cs.re * cosh(z.im) - cs.im * sinh(z.im) * 1i; } /** ditto */ real cos(ireal y) { return cosh(y.im); } debug(UnitTest) { unittest{ assert(cos(0.0+0.0i)==1.0); assert(cos(1.3L+0.0i)==cos(1.3L)); assert(cos(5.2Li)== cosh(5.2L)); } } /*************** * Calculates the arc cosine of x, * returning a value ranging from 0 to $(PI). * * $(TABLE_SV * $(TR $(TH x) $(TH acos(x)) $(TH invalid?)) * $(TR $(TD $(GT)1.0) $(TD $(NAN)) $(TD yes)) * $(TR $(TD $(LT)-1.0) $(TD $(NAN)) $(TD yes)) * $(TR $(TD $(NAN)) $(TD $(NAN)) $(TD yes)) * ) */ real acos(real x) { return tango.stdc.math.acosl(x); } debug(UnitTest) { unittest { // NaN payloads version(darwin){} else { assert(isIdentical(acos(NaN(254)), NaN(254))); } } } /*************** * Calculates the arc sine of x, * returning a value ranging from -$(PI)/2 to $(PI)/2. * * $(TABLE_SV * $(TR $(TH x) $(TH asin(x)) $(TH invalid?)) * $(TR $(TD $(PLUSMN)0.0) $(TD $(PLUSMN)0.0) $(TD no)) * $(TR $(TD $(GT)1.0) $(TD $(NAN)) $(TD yes)) * $(TR $(TD $(LT)-1.0) $(TD $(NAN)) $(TD yes)) * ) */ real asin(real x) { return tango.stdc.math.asinl(x); } debug(UnitTest) { unittest { // NaN payloads version(darwin){} else{ assert(isIdentical(asin(NaN(7249)), NaN(7249))); } } } /*************** * Calculates the arc tangent of x, * returning a value ranging from -$(PI)/2 to $(PI)/2. * * $(TABLE_SV * $(TR $(TH x) $(TH atan(x)) $(TH invalid?)) * $(TR $(TD $(PLUSMN)0.0) $(TD $(PLUSMN)0.0) $(TD no)) * $(TR $(TD $(PLUSMN)$(INFIN)) $(TD $(NAN)) $(TD yes)) * ) */ real atan(real x) { return tango.stdc.math.atanl(x); } debug(UnitTest) { unittest { // NaN payloads assert(isIdentical(atan(NaN(9876)), NaN(9876))); } } /*************** * Calculates the arc tangent of y / x, * returning a value ranging from -$(PI) to $(PI). * * $(TABLE_SV * $(TR $(TH y) $(TH x) $(TH atan(y, x))) * $(TR $(TD $(NAN)) $(TD anything) $(TD $(NAN)) ) * $(TR $(TD anything) $(TD $(NAN)) $(TD $(NAN)) ) * $(TR $(TD $(PLUSMN)0.0) $(TD $(GT)0.0) $(TD $(PLUSMN)0.0) ) * $(TR $(TD $(PLUSMN)0.0) $(TD +0.0) $(TD $(PLUSMN)0.0) ) * $(TR $(TD $(PLUSMN)0.0) $(TD $(LT)0.0) $(TD $(PLUSMN)$(PI))) * $(TR $(TD $(PLUSMN)0.0) $(TD -0.0) $(TD $(PLUSMN)$(PI))) * $(TR $(TD $(GT)0.0) $(TD $(PLUSMN)0.0) $(TD $(PI)/2) ) * $(TR $(TD $(LT)0.0) $(TD $(PLUSMN)0.0) $(TD -$(PI)/2) ) * $(TR $(TD $(GT)0.0) $(TD $(INFIN)) $(TD $(PLUSMN)0.0) ) * $(TR $(TD $(PLUSMN)$(INFIN)) $(TD anything) $(TD $(PLUSMN)$(PI)/2)) * $(TR $(TD $(GT)0.0) $(TD -$(INFIN)) $(TD $(PLUSMN)$(PI)) ) * $(TR $(TD $(PLUSMN)$(INFIN)) $(TD $(INFIN)) $(TD $(PLUSMN)$(PI)/4)) * $(TR $(TD $(PLUSMN)$(INFIN)) $(TD -$(INFIN)) $(TD $(PLUSMN)3$(PI)/4)) * ) */ real atan2(real y, real x) { return tango.stdc.math.atan2l(y,x); } debug(UnitTest) { unittest { // NaN payloads assert(isIdentical(atan2(5.3, NaN(9876)), NaN(9876))); assert(isIdentical(atan2(NaN(9876), 2.18), NaN(9876))); } } /*********************************** * Complex inverse sine * * asin(z) = -i log( sqrt(1-$(POWER z, 2)) + iz) * where both log and sqrt are complex. */ creal asin(creal z) { return -log(sqrt(1-z*z) + z*1i)*1i; } debug(UnitTest) { unittest { assert(asin(sin(0+0i)) == 0 + 0i); } } /*********************************** * Complex inverse cosine * * acos(z) = $(PI)/2 - asin(z) */ creal acos(creal z) { return PI_2 - asin(z); } /*********************************** * Calculates the hyperbolic cosine of x. * * $(TABLE_SV * $(TR $(TH x) $(TH cosh(x)) $(TH invalid?)) * $(TR $(TD $(PLUSMN)$(INFIN)) $(TD $(PLUSMN)0.0) $(TD no) ) * ) */ real cosh(real x) { // cosh = (exp(x)+exp(-x))/2. // The naive implementation works correctly. real y = exp(x); return (y + 1.0/y) * 0.5; } debug(UnitTest) { unittest { // NaN payloads assert(isIdentical(cosh(NaN(432)), NaN(432))); } } /*********************************** * Calculates the hyperbolic sine of x. * * $(TABLE_SV * $(TR $(TH x) $(TH sinh(x)) $(TH invalid?)) * $(TR $(TD $(PLUSMN)0.0) $(TD $(PLUSMN)0.0) $(TD no)) * $(TR $(TD $(PLUSMN)$(INFIN)) $(TD $(PLUSMN)$(INFIN)) $(TD no)) * ) */ real sinh(real x) { // sinh(x) = (exp(x)-exp(-x))/2; // Very large arguments could cause an overflow, but // the maximum value of x for which exp(x) + exp(-x)) != exp(x) // is x = 0.5 * (real.mant_dig) * LN2. // = 22.1807 for real80. if (fabs(x) > real.mant_dig * LN2) { return copysign(0.5*exp(fabs(x)), x); } real y = expm1(x); return 0.5 * y / (y+1) * (y+2); } debug(UnitTest) { unittest { // NaN payloads assert(isIdentical(sinh(NaN(0xABC)), NaN(0xABC))); } } /*********************************** * Calculates the hyperbolic tangent of x. * * $(TABLE_SV * $(TR $(TH x) $(TH tanh(x)) $(TH invalid?)) * $(TR $(TD $(PLUSMN)0.0) $(TD $(PLUSMN)0.0) $(TD no) ) * $(TR $(TD $(PLUSMN)$(INFIN)) $(TD $(PLUSMN)1.0) $(TD no)) * ) */ real tanh(real x) { // tanh(x) = (exp(x) - exp(-x))/(exp(x)+exp(-x)) if (fabs(x)> real.mant_dig * LN2){ return copysign(1, x); } real y = expm1(2*x); return y/(y + 2); } debug(UnitTest) { unittest { // NaN payloads assert(isIdentical(tanh(NaN(0xABC)), NaN(0xABC))); } } /*********************************** * hyperbolic sine, complex and imaginary * * sinh(z) = cos(z.im)*sinh(z.re) + sin(z.im)*cosh(z.re)i */ creal sinh(creal z) { creal cs = expi(z.im); return cs.re * sinh(z.re) + cs.im * cosh(z.re) * 1i; } /** ditto */ ireal sinh(ireal y) { return sin(y.im)*1i; } debug(UnitTest) { unittest { assert(sinh(4.2L + 0i)==sinh(4.2L)); } } /*********************************** * hyperbolic cosine, complex and imaginary * * cosh(z) = cos(z.im)*cosh(z.re) + sin(z.im)*sinh(z.re)i */ creal cosh(creal z) { creal cs = expi(z.im); return cs.re * cosh(z.re) + cs.im * sinh(z.re) * 1i; } /** ditto */ real cosh(ireal y) { return cos(y.im); } debug(UnitTest) { unittest { assert(cosh(8.3L + 0i)==cosh(8.3L)); } } /*********************************** * Calculates the inverse hyperbolic cosine of x. * * Mathematically, acosh(x) = log(x + sqrt( x*x - 1)) * * $(TABLE_SV * $(SVH x, acosh(x) ) * $(SV $(NAN), $(NAN) ) * $(SV $(LT)1, $(NAN) ) * $(SV 1, 0 ) * $(SV +$(INFIN),+$(INFIN)) * ) */ real acosh(real x) { if (x > 1/real.epsilon) return LN2 + log(x); else return log(x + sqrt(x*x - 1)); } debug(UnitTest) { unittest { assert(isNaN(acosh(0.9))); assert(isNaN(acosh(real.nan))); assert(acosh(1)==0.0); assert(acosh(real.infinity) == real.infinity); // NaN payloads assert(isIdentical(acosh(NaN(0xABC)), NaN(0xABC))); } } /*********************************** * Calculates the inverse hyperbolic sine of x. * * Mathematically, * --------------- * asinh(x) = log( x + sqrt( x*x + 1 )) // if x >= +0 * asinh(x) = -log(-x + sqrt( x*x + 1 )) // if x <= -0 * ------------- * * $(TABLE_SV * $(SVH x, asinh(x) ) * $(SV $(NAN), $(NAN) ) * $(SV $(PLUSMN)0, $(PLUSMN)0 ) * $(SV $(PLUSMN)$(INFIN),$(PLUSMN)$(INFIN)) * ) */ real asinh(real x) { if (tango.math.IEEE.fabs(x) > 1 / real.epsilon) // beyond this point, x*x + 1 == x*x return tango.math.IEEE.copysign(LN2 + log(tango.math.IEEE.fabs(x)), x); else { // sqrt(x*x + 1) == 1 + x * x / ( 1 + sqrt(x*x + 1) ) return tango.math.IEEE.copysign(log1p(tango.math.IEEE.fabs(x) + x*x / (1 + sqrt(x*x + 1)) ), x); } } debug(UnitTest) { unittest { assert(isIdentical(0.0L,asinh(0.0))); assert(isIdentical(-0.0L,asinh(-0.0))); assert(asinh(real.infinity) == real.infinity); assert(asinh(-real.infinity) == -real.infinity); assert(isNaN(asinh(real.nan))); // NaN payloads assert(isIdentical(asinh(NaN(0xABC)), NaN(0xABC))); } } /*********************************** * Calculates the inverse hyperbolic tangent of x, * returning a value from ranging from -1 to 1. * * Mathematically, atanh(x) = log( (1+x)/(1-x) ) / 2 * * * $(TABLE_SV * $(SVH x, acosh(x) ) * $(SV $(NAN), $(NAN) ) * $(SV $(PLUSMN)0, $(PLUSMN)0) * $(SV -$(INFIN), -0) * ) */ real atanh(real x) { // log( (1+x)/(1-x) ) == log ( 1 + (2*x)/(1-x) ) return 0.5 * log1p( 2 * x / (1 - x) ); } debug(UnitTest) { unittest { assert(isIdentical(0.0L, atanh(0.0))); assert(isIdentical(-0.0L,atanh(-0.0))); assert(isIdentical(atanh(-1),-real.infinity)); assert(isIdentical(atanh(1),real.infinity)); assert(isNaN(atanh(-real.infinity))); // NaN payloads assert(isIdentical(atanh(NaN(0xABC)), NaN(0xABC))); } } /** ditto */ creal atanh(ireal y) { // Not optimised for accuracy or speed return 0.5*(log(1+y) - log(1-y)); } /** ditto */ creal atanh(creal z) { // Not optimised for accuracy or speed return 0.5 * (log(1 + z) - log(1-z)); } /* * Powers and Roots */ /*************************************** * Compute square root of x. * * $(TABLE_SV * $(TR $(TH x) $(TH sqrt(x)) $(TH invalid?)) * $(TR $(TD -0.0) $(TD -0.0) $(TD no)) * $(TR $(TD $(LT)0.0) $(TD $(NAN)) $(TD yes)) * $(TR $(TD +$(INFIN)) $(TD +$(INFIN)) $(TD no)) * ) */ float sqrt(float x) /* intrinsic */ { version(LDC) { return llvm_sqrt(x); } else version(D_InlineAsm_X86) { asm { fld x; fsqrt; } } else { return tango.stdc.math.sqrtf(x); } } double sqrt(double x) /* intrinsic */ /// ditto { version(LDC) { return llvm_sqrt(x); } else version(D_InlineAsm_X86) { asm { fld x; fsqrt; } } else { return tango.stdc.math.sqrt(x); } } real sqrt(real x) /* intrinsic */ /// ditto { version(LDC) { return llvm_sqrt(x); } else version(D_InlineAsm_X86) { asm { fld x; fsqrt; } } else { return tango.stdc.math.sqrtl(x); } } /** ditto */ creal sqrt(creal z) { if (z == 0.0) return z; real x,y,w,r; creal c; x = tango.math.IEEE.fabs(z.re); y = tango.math.IEEE.fabs(z.im); if (x >= y) { r = y / x; w = sqrt(x) * sqrt(0.5 * (1 + sqrt(1 + r * r))); } else { r = x / y; w = sqrt(y) * sqrt(0.5 * (r + sqrt(1 + r * r))); } if (z.re >= 0) { c = w + (z.im / (w + w)) * 1.0i; } else { if (z.im < 0) w = -w; c = z.im / (w + w) + w * 1.0i; } return c; } debug(UnitTest) { unittest { // NaN payloads assert(isIdentical(sqrt(NaN(0xABC)), NaN(0xABC))); assert(sqrt(-1+0i) == 1i); assert(isIdentical(sqrt(0-0i), 0-0i)); assert(cfeqrel(sqrt(4+16i)*sqrt(4+16i), 4+16i)>=real.mant_dig-2); } } /*************** * Calculates the cube root of x. * * $(TABLE_SV * $(TR $(TH $(I x)) $(TH cbrt(x)) $(TH invalid?)) * $(TR $(TD $(PLUSMN)0.0) $(TD $(PLUSMN)0.0) $(TD no) ) * $(TR $(TD $(NAN)) $(TD $(NAN)) $(TD yes) ) * $(TR $(TD $(PLUSMN)$(INFIN)) $(TD $(PLUSMN)$(INFIN)) $(TD no) ) * ) */ real cbrt(real x) { return tango.stdc.math.cbrtl(x); } debug(UnitTest) { unittest { // NaN payloads assert(isIdentical(cbrt(NaN(0xABC)), NaN(0xABC))); } } public: /** * Calculates e$(SUP x). * * $(TABLE_SV * $(TR $(TH x) $(TH e$(SUP x)) ) * $(TD +$(INFIN)) $(TD +$(INFIN)) ) * $(TD -$(INFIN)) $(TD +0.0) ) * $(TR $(TD $(NAN)) $(TD $(NAN)) ) * ) */ real exp(real x) { version(Naked_D_InlineAsm_X86) { // e^x = 2^(LOG2E*x) // (This is valid because the overflow & underflow limits for exp // and exp2 are so similar). return exp2(LOG2E*x); } else { return tango.stdc.math.expl(x); } } /** * Calculates the value of the natural logarithm base (e) * raised to the power of x, minus 1. * * For very small x, expm1(x) is more accurate * than exp(x)-1. * * $(TABLE_SV * $(TR $(TH x) $(TH e$(SUP x)-1) ) * $(TR $(TD $(PLUSMN)0.0) $(TD $(PLUSMN)0.0) ) * $(TD +$(INFIN)) $(TD +$(INFIN)) ) * $(TD -$(INFIN)) $(TD -1.0) ) * $(TR $(TD $(NAN)) $(TD $(NAN)) ) * ) */ real expm1(real x) { version(Naked_D_InlineAsm_X86) { enum { PARAMSIZE = (real.sizeof+3)&(0xFFFF_FFFC) } // always a multiple of 4 asm { /* expm1() for x87 80-bit reals, IEEE754-2008 conformant. * Author: Don Clugston. * * expm1(x) = 2^(rndint(y))* 2^(y-rndint(y)) - 1 where y = LN2*x. * = 2rndy * 2ym1 + 2rndy - 1, where 2rndy = 2^(rndint(y)) * and 2ym1 = (2^(y-rndint(y))-1). * If 2rndy < 0.5*real.epsilon, result is -1. * Implementation is otherwise the same as for exp2() */ naked; fld real ptr [ESP+4] ; // x mov AX, [ESP+4+8]; // AX = exponent and sign sub ESP, 12+8; // Create scratch space on the stack // [ESP,ESP+2] = scratchint // [ESP+4..+6, +8..+10, +10] = scratchreal // set scratchreal mantissa = 1.0 mov dword ptr [ESP+8], 0; mov dword ptr [ESP+8+4], 0x80000000; and AX, 0x7FFF; // drop sign bit cmp AX, 0x401D; // avoid InvalidException in fist jae L_extreme; fldl2e; fmul ; // y = x*log2(e) fist dword ptr [ESP]; // scratchint = rndint(y) fisub dword ptr [ESP]; // y - rndint(y) // and now set scratchreal exponent mov EAX, [ESP]; add EAX, 0x3fff; jle short L_largenegative; cmp EAX,0x8000; jge short L_largepositive; mov [ESP+8+8],AX; f2xm1; // 2^(y-rndint(y)) -1 fld real ptr [ESP+8] ; // 2^rndint(y) fmul ST(1), ST; fld1; fsubp ST(1), ST; fadd; add ESP,12+8; ret PARAMSIZE; L_extreme: // Extreme exponent. X is very large positive, very // large negative, infinity, or NaN. fxam; fstsw AX; test AX, 0x0400; // NaN_or_zero, but we already know x!=0 jz L_was_nan; // if x is NaN, returns x test AX, 0x0200; jnz L_largenegative; L_largepositive: // Set scratchreal = real.max. // squaring it will create infinity, and set overflow flag. mov word ptr [ESP+8+8], 0x7FFE; fstp ST(0);//, ST; fld real ptr [ESP+8]; // load scratchreal fmul ST(0), ST; // square it, to create havoc! L_was_nan: add ESP,12+8; ret PARAMSIZE; L_largenegative: fstp ST(0);//, ST; fld1; fchs; // return -1. Underflow flag is not set. add ESP,12+8; ret PARAMSIZE; } } else { return tango.stdc.math.expm1l(x); } } /** * Calculates 2$(SUP x). * * $(TABLE_SV * $(TR $(TH x) $(TH exp2(x) ) * $(TD +$(INFIN)) $(TD +$(INFIN)) ) * $(TD -$(INFIN)) $(TD +0.0) ) * $(TR $(TD $(NAN)) $(TD $(NAN)) ) * ) */ real exp2(real x) { version(Naked_D_InlineAsm_X86) { enum { PARAMSIZE = (real.sizeof+3)&(0xFFFF_FFFC) } // always a multiple of 4 asm { /* exp2() for x87 80-bit reals, IEEE754-2008 conformant. * Author: Don Clugston. * * exp2(x) = 2^(rndint(x))* 2^(y-rndint(x)) * The trick for high performance is to avoid the fscale(28cycles on core2), * frndint(19 cycles), leaving f2xm1(19 cycles) as the only slow instruction. * * We can do frndint by using fist. BUT we can't use it for huge numbers, * because it will set the Invalid Operation flag is overflow or NaN occurs. * Fortunately, whenever this happens the result would be zero or infinity. * * We can perform fscale by directly poking into the exponent. BUT this doesn't * work for the (very rare) cases where the result is subnormal. So we fall back * to the slow method in that case. */ naked; fld real ptr [ESP+4] ; // x mov AX, [ESP+4+8]; // AX = exponent and sign sub ESP, 12+8; // Create scratch space on the stack // [ESP,ESP+2] = scratchint // [ESP+4..+6, +8..+10, +10] = scratchreal // set scratchreal mantissa = 1.0 mov dword ptr [ESP+8], 0; mov dword ptr [ESP+8+4], 0x80000000; and AX, 0x7FFF; // drop sign bit cmp AX, 0x401D; // avoid InvalidException in fist jae L_extreme; fist dword ptr [ESP]; // scratchint = rndint(x) fisub dword ptr [ESP]; // x - rndint(x) // and now set scratchreal exponent mov EAX, [ESP]; add EAX, 0x3fff; jle short L_subnormal; cmp EAX,0x8000; jge short L_overflow; mov [ESP+8+8],AX; L_normal: f2xm1; fld1; fadd; // 2^(x-rndint(x)) fld real ptr [ESP+8] ; // 2^rndint(x) add ESP,12+8; fmulp ST(1), ST; ret PARAMSIZE; L_subnormal: // Result will be subnormal. // In this rare case, the simple poking method doesn't work. // The speed doesn't matter, so use the slow fscale method. fild dword ptr [ESP]; // scratchint fld1; fscale; fstp real ptr [ESP+8]; // scratchreal = 2^scratchint fstp ST(0);//,ST; // drop scratchint jmp L_normal; L_extreme: // Extreme exponent. X is very large positive, very // large negative, infinity, or NaN. fxam; fstsw AX; test AX, 0x0400; // NaN_or_zero, but we already know x!=0 jz L_was_nan; // if x is NaN, returns x // set scratchreal = real.min // squaring it will return 0, setting underflow flag mov word ptr [ESP+8+8], 1; test AX, 0x0200; jnz L_waslargenegative; L_overflow: // Set scratchreal = real.max. // squaring it will create infinity, and set overflow flag. mov word ptr [ESP+8+8], 0x7FFE; L_waslargenegative: fstp ST(0);//, ST; fld real ptr [ESP+8]; // load scratchreal fmul ST(0), ST; // square it, to create havoc! L_was_nan: add ESP,12+8; ret PARAMSIZE; } } else { return tango.stdc.math.exp2l(x); } } debug(UnitTest) { unittest { // NaN payloads assert(isIdentical(exp(NaN(0xABC)), NaN(0xABC))); } } debug(UnitTest) { unittest { // NaN payloads assert(isIdentical(expm1(NaN(0xABC)), NaN(0xABC))); } } debug(UnitTest) { unittest { // NaN payloads assert(isIdentical(exp2(NaN(0xABC)), NaN(0xABC))); } } /* * Powers and Roots */ /************************************** * Calculate the natural logarithm of x. * * $(TABLE_SV * $(TR $(TH x) $(TH log(x)) $(TH divide by 0?) $(TH invalid?)) * $(TR $(TD $(PLUSMN)0.0) $(TD -$(INFIN)) $(TD yes) $(TD no)) * $(TR $(TD $(LT)0.0) $(TD $(NAN)) $(TD no) $(TD yes)) * $(TR $(TD +$(INFIN)) $(TD +$(INFIN)) $(TD no) $(TD no)) * ) */ real log(real x) { return tango.stdc.math.logl(x); } debug(UnitTest) { unittest { // NaN payloads assert(isIdentical(log(NaN(0xABC)), NaN(0xABC))); } } /****************************************** * Calculates the natural logarithm of 1 + x. * * For very small x, log1p(x) will be more accurate than * log(1 + x). * * $(TABLE_SV * $(TR $(TH x) $(TH log1p(x)) $(TH divide by 0?) $(TH invalid?)) * $(TR $(TD $(PLUSMN)0.0) $(TD $(PLUSMN)0.0) $(TD no) $(TD no)) * $(TR $(TD -1.0) $(TD -$(INFIN)) $(TD yes) $(TD no)) * $(TR $(TD $(LT)-1.0) $(TD $(NAN)) $(TD no) $(TD yes)) * $(TR $(TD +$(INFIN)) $(TD -$(INFIN)) $(TD no) $(TD no)) * ) */ real log1p(real x) { return tango.stdc.math.log1pl(x); } debug(UnitTest) { unittest { // NaN payloads assert(isIdentical(log1p(NaN(0xABC)), NaN(0xABC))); } } /*************************************** * Calculates the base-2 logarithm of x: * $(SUB log, 2)x * * $(TABLE_SV * $(TR $(TH x) $(TH log2(x)) $(TH divide by 0?) $(TH invalid?)) * $(TR $(TD $(PLUSMN)0.0) $(TD -$(INFIN)) $(TD yes) $(TD no) ) * $(TR $(TD $(LT)0.0) $(TD $(NAN)) $(TD no) $(TD yes) ) * $(TR $(TD +$(INFIN)) $(TD +$(INFIN)) $(TD no) $(TD no) ) * ) */ real log2(real x) { return tango.stdc.math.log2l(x); } debug(UnitTest) { unittest { // NaN payloads assert(isIdentical(log2(NaN(0xABC)), NaN(0xABC))); } } /************************************** * Calculate the base-10 logarithm of x. * * $(TABLE_SV * $(TR $(TH x) $(TH log10(x)) $(TH divide by 0?) $(TH invalid?)) * $(TR $(TD $(PLUSMN)0.0) $(TD -$(INFIN)) $(TD yes) $(TD no)) * $(TR $(TD $(LT)0.0) $(TD $(NAN)) $(TD no) $(TD yes)) * $(TR $(TD +$(INFIN)) $(TD +$(INFIN)) $(TD no) $(TD no)) * ) */ real log10(real x) { return tango.stdc.math.log10l(x); } debug(UnitTest) { unittest { // NaN payloads assert(isIdentical(log10(NaN(0xABC)), NaN(0xABC))); } } /*********************************** * Exponential, complex and imaginary * * For complex numbers, the exponential function is defined as * * exp(z) = exp(z.re)cos(z.im) + exp(z.re)sin(z.im)i. * * For a pure imaginary argument, * exp(θi) = cos(θ) + sin(θ)i. * */ creal exp(ireal y) { return expi(y.im); } /** ditto */ creal exp(creal z) { return expi(z.im) * exp(z.re); } debug(UnitTest) { unittest { assert(exp(1.3e5Li)==cos(1.3e5L)+sin(1.3e5L)*1i); assert(exp(0.0Li)==1L+0.0Li); assert(exp(7.2 + 0.0i) == exp(7.2L)); creal c = exp(ireal.nan); assert(isNaN(c.re) && isNaN(c.im)); c = exp(ireal.infinity); assert(isNaN(c.re) && isNaN(c.im)); } } /*********************************** * Natural logarithm, complex * * Returns complex logarithm to the base e (2.718...) of * the complex argument x. * * If z = x + iy, then * log(z) = log(abs(z)) + i arctan(y/x). * * The arctangent ranges from -PI to +PI. * There are branch cuts along both the negative real and negative * imaginary axes. For pure imaginary arguments, use one of the * following forms, depending on which branch is required. * ------------ * log( 0.0 + yi) = log(-y) + PI_2i // y<=-0.0 * log(-0.0 + yi) = log(-y) - PI_2i // y<=-0.0 * ------------ */ creal log(creal z) { return log(abs(z)) + atan2(z.im, z.re)*1i; } debug(UnitTest) { private { /* * feqrel for complex numbers. Returns the worst relative * equality of the two components. */ int cfeqrel(creal a, creal b) { int intmin(int a, int b) { return a<b? a: b; } return intmin(feqrel(a.re, b.re), feqrel(a.im, b.im)); } } unittest { assert(log(3.0L +0i) == log(3.0L)+0i); assert(cfeqrel(log(0.0L-2i),( log(2.0L)-PI_2*1i)) >= real.mant_dig-10); assert(cfeqrel(log(0.0L+2i),( log(2.0L)+PI_2*1i)) >= real.mant_dig-10); } } /** * Fast integral powers. */ real pow(real x, uint n) { real p; switch (n) { case 0: p = 1.0; break; case 1: p = x; break; case 2: p = x * x; break; default: p = 1.0; while (1){ if (n & 1) p *= x; n >>= 1; if (!n) break; x *= x; } break; } return p; } /** ditto */ real pow(real x, int n) { if (n < 0) return pow(x, cast(real)n); else return pow(x, cast(uint)n); } /********************************************* * Calculates x$(SUP y). * * $(TABLE_SV * $(TR $(TH x) $(TH y) $(TH pow(x, y)) * $(TH div 0) $(TH invalid?)) * $(TR $(TD anything) $(TD $(PLUSMN)0.0) $(TD 1.0) * $(TD no) $(TD no) ) * $(TR $(TD |x| $(GT) 1) $(TD +$(INFIN)) $(TD +$(INFIN)) * $(TD no) $(TD no) ) * $(TR $(TD |x| $(LT) 1) $(TD +$(INFIN)) $(TD +0.0) * $(TD no) $(TD no) ) * $(TR $(TD |x| $(GT) 1) $(TD -$(INFIN)) $(TD +0.0) * $(TD no) $(TD no) ) * $(TR $(TD |x| $(LT) 1) $(TD -$(INFIN)) $(TD +$(INFIN)) * $(TD no) $(TD no) ) * $(TR $(TD +$(INFIN)) $(TD $(GT) 0.0) $(TD +$(INFIN)) * $(TD no) $(TD no) ) * $(TR $(TD +$(INFIN)) $(TD $(LT) 0.0) $(TD +0.0) * $(TD no) $(TD no) ) * $(TR $(TD -$(INFIN)) $(TD odd integer $(GT) 0.0) $(TD -$(INFIN)) * $(TD no) $(TD no) ) * $(TR $(TD -$(INFIN)) $(TD $(GT) 0.0, not odd integer) $(TD +$(INFIN)) * $(TD no) $(TD no)) * $(TR $(TD -$(INFIN)) $(TD odd integer $(LT) 0.0) $(TD -0.0) * $(TD no) $(TD no) ) * $(TR $(TD -$(INFIN)) $(TD $(LT) 0.0, not odd integer) $(TD +0.0) * $(TD no) $(TD no) ) * $(TR $(TD $(PLUSMN)1.0) $(TD $(PLUSMN)$(INFIN)) $(TD $(NAN)) * $(TD no) $(TD yes) ) * $(TR $(TD $(LT) 0.0) $(TD finite, nonintegral) $(TD $(NAN)) * $(TD no) $(TD yes)) * $(TR $(TD $(PLUSMN)0.0) $(TD odd integer $(LT) 0.0) $(TD $(PLUSMNINF)) * $(TD yes) $(TD no) ) * $(TR $(TD $(PLUSMN)0.0) $(TD $(LT) 0.0, not odd integer) $(TD +$(INFIN)) * $(TD yes) $(TD no)) * $(TR $(TD $(PLUSMN)0.0) $(TD odd integer $(GT) 0.0) $(TD $(PLUSMN)0.0) * $(TD no) $(TD no) ) * $(TR $(TD $(PLUSMN)0.0) $(TD $(GT) 0.0, not odd integer) $(TD +0.0) * $(TD no) $(TD no) ) * ) */ real pow(real x, real y) { version (linux) // C pow() often does not handle special values correctly { if (isNaN(y)) return y; if (y == 0) return 1; // even if x is $(NAN) if (isNaN(x) && y != 0) return x; if (isInfinity(y)) { if (tango.math.IEEE.fabs(x) > 1) { if (signbit(y)) return +0.0; else return real.infinity; } else if (tango.math.IEEE.fabs(x) == 1) { return NaN(TANGO_NAN.POW_DOMAIN); } else // < 1 { if (signbit(y)) return real.infinity; else return +0.0; } } if (isInfinity(x)) { if (signbit(x)) { long i; i = cast(long)y; if (y > 0) { if (i == y && i & 1) return -real.infinity; else return real.infinity; } else if (y < 0) { if (i == y && i & 1) return -0.0; else return +0.0; } } else { if (y > 0) return real.infinity; else if (y < 0) return +0.0; } } if (x == 0.0) { if (signbit(x)) { long i; i = cast(long)y; if (y > 0) { if (i == y && i & 1) return -0.0; else return +0.0; } else if (y < 0) { if (i == y && i & 1) return -real.infinity; else return real.infinity; } } else { if (y > 0) return +0.0; else if (y < 0) return real.infinity; } } } version(LDC) { return llvm_pow(x, y); } else { return tango.stdc.math.powl(x, y); } } debug(UnitTest) { unittest { real x = 46; assert(pow(x,0) == 1.0); assert(pow(x,1) == x); assert(pow(x,2) == x * x); assert(pow(x,3) == x * x * x); assert(pow(x,8) == (x * x) * (x * x) * (x * x) * (x * x)); // NaN payloads assert(isIdentical(pow(NaN(0xABC), 19), NaN(0xABC))); } } /*********************************************************************** * Calculates the length of the * hypotenuse of a right-angled triangle with sides of length x and y. * The hypotenuse is the value of the square root of * the sums of the squares of x and y: * * sqrt($(POW x, 2) + $(POW y, 2)) * * Note that hypot(x, y), hypot(y, x) and * hypot(x, -y) are equivalent. * * $(TABLE_SV * $(TR $(TH x) $(TH y) $(TH hypot(x, y)) $(TH invalid?)) * $(TR $(TD x) $(TD $(PLUSMN)0.0) $(TD |x|) $(TD no)) * $(TR $(TD $(PLUSMNINF)) $(TD y) $(TD +$(INFIN)) $(TD no)) * $(TR $(TD $(PLUSMNINF)) $(TD $(NAN)) $(TD +$(INFIN)) $(TD no)) * ) */ real hypot(real x, real y) { /* * This is based on code from: * Cephes Math Library Release 2.1: January, 1989 * Copyright 1984, 1987, 1989 by Stephen L. Moshier * Direct inquiries to 30 Frost Street, Cambridge, MA 02140 */ enum int PRECL = real.mant_dig/2; // = 32 real xx, yy, b, re, im; int ex, ey, e; // Note, hypot(INFINITY, NAN) = INFINITY. if (tango.math.IEEE.isInfinity(x) || tango.math.IEEE.isInfinity(y)) return real.infinity; if (tango.math.IEEE.isNaN(x)) return x; if (tango.math.IEEE.isNaN(y)) return y; re = tango.math.IEEE.fabs(x); im = tango.math.IEEE.fabs(y); if (re == 0.0) return im; if (im == 0.0) return re; // Get the exponents of the numbers xx = tango.math.IEEE.frexp(re, ex); yy = tango.math.IEEE.frexp(im, ey); // Check if one number is tiny compared to the other e = ex - ey; if (e > PRECL) return re; if (e < -PRECL) return im; // Find approximate exponent e of the geometric mean. e = (ex + ey) >> 1; // Rescale so mean is about 1 xx = tango.math.IEEE.ldexp(re, -e); yy = tango.math.IEEE.ldexp(im, -e); // Hypotenuse of the right triangle b = sqrt(xx * xx + yy * yy); // Compute the exponent of the answer. yy = tango.math.IEEE.frexp(b, ey); ey = e + ey; // Check it for overflow and underflow. if (ey > real.max_exp + 2) { return real.infinity; } if (ey < real.min_exp - 2) return 0.0; // Undo the scaling b = tango.math.IEEE.ldexp(b, e); return b; } debug(UnitTest) { unittest { static real vals[][3] = // x,y,hypot [ [ 0, 0, 0], [ 0, -0, 0], [ 3, 4, 5], [ -300, -400, 500], [ real.min, real.min, 0x1.6a09e667f3bcc908p-16382L], [ real.max/2, real.max/2, 0x1.6a09e667f3bcc908p+16383L /*8.41267e+4931L*/], [ real.max, 1, real.max], [ real.infinity, real.nan, real.infinity], [ real.nan, real.nan, real.nan], ]; for (int i = 0; i < vals.length; i++) { real x = vals[i][0]; real y = vals[i][1]; real z = vals[i][2]; real h = hypot(x, y); assert(isIdentical(z, h)); } // NaN payloads assert(isIdentical(hypot(NaN(0xABC), 3.14), NaN(0xABC))); assert(isIdentical(hypot(7.6e39, NaN(0xABC)), NaN(0xABC))); } } /*********************************** * Evaluate polynomial A(x) = $(SUB a, 0) + $(SUB a, 1)x + $(SUB a, 2)$(POWER x,2) * + $(SUB a,3)$(POWER x,3); ... * * Uses Horner's rule A(x) = $(SUB a, 0) + x($(SUB a, 1) + x($(SUB a, 2) * + x($(SUB a, 3) + ...))) * Params: * A = array of coefficients $(SUB a, 0), $(SUB a, 1), etc. */ T poly(T)(T x, const(T[]) A) in { assert(A.length > 0); } body { version (Naked_D_InlineAsm_X86) { enum bool Use_D_InlineAsm_X86 = true; } else enum bool Use_D_InlineAsm_X86 = false; // BUG (Inherited from Phobos): This code assumes a frame pointer in EBP. // This is not in the spec. static if (Use_D_InlineAsm_X86 && is(T==real) && T.sizeof == 10) { asm // assembler by W. Bright { // EDX = (A.length - 1) * real.sizeof mov ECX,A[EBP] ; // ECX = A.length dec ECX ; lea EDX,[ECX][ECX*8] ; add EDX,ECX ; add EDX,A+4[EBP] ; fld real ptr [EDX] ; // ST0 = coeff[ECX] jecxz return_ST ; fld x[EBP] ; // ST0 = x fxch ST(1) ; // ST1 = x, ST0 = r align 4 ; L2: fmul ST,ST(1) ; // r *= x fld real ptr -10[EDX] ; sub EDX,10 ; // deg-- faddp ST(1),ST ; dec ECX ; jne L2 ; fxch ST(1) ; // ST1 = r, ST0 = x fstp ST(0) ; // dump x align 4 ; return_ST: ; ; } } else static if ( Use_D_InlineAsm_X86 && is(T==real) && T.sizeof==12){ asm // assembler by W. Bright { // EDX = (A.length - 1) * real.sizeof mov ECX,A[EBP] ; // ECX = A.length dec ECX ; lea EDX,[ECX*8] ; lea EDX,[EDX][ECX*4] ; add EDX,A+4[EBP] ; fld real ptr [EDX] ; // ST0 = coeff[ECX] jecxz return_ST ; fld x ; // ST0 = x fxch ST(1) ; // ST1 = x, ST0 = r align 4 ; L2: fmul ST,ST(1) ; // r *= x fld real ptr -12[EDX] ; sub EDX,12 ; // deg-- faddp ST(1),ST ; dec ECX ; jne L2 ; fxch ST(1) ; // ST1 = r, ST0 = x fstp ST(0) ; // dump x align 4 ; return_ST: ; ; } } else { ptrdiff_t i = A.length - 1; real r = A[i]; while (--i >= 0) { r *= x; r += A[i]; } return r; } } debug(UnitTest) { unittest { real x = 3.1; enum real pp[] = [56.1L, 32.7L, 6L]; assert( poly(x, pp) == (56.1L + (32.7L + 6L * x) * x) ); assert(isIdentical(poly(NaN(0xABC), pp), NaN(0xABC))); } } package { T rationalPoly(T)(T x, const(T []) numerator, const(T []) denominator) { return poly(x, numerator)/poly(x, denominator); } } deprecated { private enum : int { MANTDIG_2 = real.mant_dig/2 } // Compiler workaround /** Floating point "approximate equality". * * Return true if x is equal to y, to within the specified precision * If roundoffbits is not specified, a reasonable default is used. */ bool feq(int precision = MANTDIG_2, XReal=real, YReal=real)(XReal x, YReal y) { static assert(is( XReal: real) && is(YReal : real)); return tango.math.IEEE.feqrel(cast(real)x, cast(real)y) >= precision; } unittest{ assert(!feq(1.0,2.0)); real y = 58.0000000001; assert(feq!(20)(58, y)); } } /* * Rounding (returning real) */ /** * Returns the value of x rounded downward to the next integer * (toward negative infinity). */ real floor(real x) { return tango.stdc.math.floorl(x); } debug(UnitTest) { unittest { assert(isIdentical(floor(NaN(0xABC)), NaN(0xABC))); } } /** * Returns the value of x rounded upward to the next integer * (toward positive infinity). */ real ceil(real x) { return tango.stdc.math.ceill(x); } unittest { assert(isIdentical(ceil(NaN(0xABC)), NaN(0xABC))); } /** * Return the value of x rounded to the nearest integer. * If the fractional part of x is exactly 0.5, the return value is rounded to * the even integer. */ real round(real x) { return tango.stdc.math.roundl(x); } debug(UnitTest) { unittest { assert(isIdentical(round(NaN(0xABC)), NaN(0xABC))); } } /** * Returns the integer portion of x, dropping the fractional portion. * * This is also known as "chop" rounding. */ real trunc(real x) { return tango.stdc.math.truncl(x); } debug(UnitTest) { unittest { assert(isIdentical(trunc(NaN(0xABC)), NaN(0xABC))); } } /** * Rounds x to the nearest int or long. * * This is generally the fastest method to convert a floating-point number * to an integer. Note that the results from this function * depend on the rounding mode, if the fractional part of x is exactly 0.5. * If using the default rounding mode (ties round to even integers) * rndint(4.5) == 4, rndint(5.5)==6. */ int rndint(real x) { version(Naked_D_InlineAsm_X86) { int n; asm { fld x; fistp n; } return n; } else { return cast(int)tango.stdc.math.lrintl(x); } } /** ditto */ long rndlong(real x) { version(Naked_D_InlineAsm_X86) { long n; asm { fld x; fistp n; } return n; } else { return tango.stdc.math.llrintl(x); } } debug(UnitTest) { version(D_InlineAsm_X86) { // Won't work for anything else yet unittest { int r = getIeeeRounding(); assert(r==RoundingMode.ROUNDTONEAREST); real b = 5.5; int cnear = tango.math.Math.rndint(b); assert(cnear == 6); auto oldrounding = setIeeeRounding(RoundingMode.ROUNDDOWN); scope (exit) setIeeeRounding(oldrounding); assert(getIeeeRounding()==RoundingMode.ROUNDDOWN); int cdown = tango.math.Math.rndint(b); assert(cdown==5); } unittest { // Check that the previous test correctly restored the rounding mode assert(getIeeeRounding()==RoundingMode.ROUNDTONEAREST); } } } |