tango.math.ErrorFunction

Error Functions and Normal Distribution.

License:

BSD style: see license.txt

Authors:

Stephen L. Moshier, ported to D by Don Clugston
real erfc(real a)
Complementary error function
erfc(x) = 1 - erf(x), and has high relative accuracy for values of x far from zero. (For values near zero, use erf(x)).

1 - erf(x) = 2/ √(π) ∫ exp( - t2) dt

For small x, erfc(x) = 1 - erf(x); otherwise rational approximations are computed.

A special function expx2(x) is used to suppress error amplification in computing exp(-x^2).
real erf(real x)
Error function
The integral is

erf(x) = 2/ √(π) ∫ exp( - t2) dt

The magnitude of x is limited to about 106.56 for IEEE 80-bit arithmetic; 1 or -1 is returned outside this range.

For 0 <= |x| < 1, a rational polynomials are used; otherwise erf(x) = 1 - erfc(x).

ACCURACY:

Relative error: arithmetic domain # trials peak rms IEEE 0,1 50000 2.0e-19 5.7e-20